

## **General Description**

The SET4038 is an 8-channel, 32-bit DAC designed for digital audio systems. Its internal circuitry boasts a state-of-the-art 32-bit digital filter that optimizes both audio quality and short group delay. With support for a maximum 192kHz PCM input, it is ideal for reproducing high-resolution audio sources that are increasingly common in network audios, USB-DACs and car audio systems.

Furthermore, the SET4038 incorporates the innovative OSR-doubler technology, enabling it to handle a diverse range of signals while minimizing out-of-band noise and maintaining low power consumption. Additionally, the device provides three types of 32-bit digital filters, which can enable sound making simple and flexible in wide range of applications. It should be noted that SET4038 needs to input the MCLK signal in advance to execute the 3-wire serial/I2C-bus program.

The SET4038 is available in a Green TQFN-5×5-32FL package.

## Features

- 8ch 32bit DAC
  - 256 x Over sampling
  - 32-bit High Quality Sound Short Delay Digital Filter
  - Single-ended Output, Smoothing Filter
  - THD+N: 91dB
  - DR, S/N: 110dB
  - Channel Independent Digital Volume Control (0dB ~ -127dB, 0.5dB Step, Mute)
  - Soft Mute
  - De-emphasis Filter (supporting 32kHz, 44.1kHz and 48kHz)
  - I/F Format: MSB justified, LSB justified, I2S, TDM
- Zero Detection
- μP Interface: 3-wire Serial/ I2C bus(Fast Speed Mode: 400kHz ) / Parallel Mode
- Power Supply
  - Analog Supply: AVDD =  $3.0 \sim 3.6V$
  - In/Output Buffer: TVDD =2.3~3.6V
  - Integrated LDO for Digital Power Supply
- Operating Temperature: Ta = 40  $\sim$  105  $^{\circ}\mathrm{C}$
- Package: TQFN-5×5-32FL(0.5mm pitch)

## Applications

- External Amplifiers
- Car Audios System
- CD Players
- Headphones
- Professional Measuring Instruments
- USB DACs

# **Typical Application**



NOTE: 1. The SET4038 includes smoothing filters.





# **Block Diagrams**

Figure 2. Block Diagram

# Pin Configurations

(TOP VIEW)



TQFN-5×5-32FL

## **PIN DESCRIPTION**

| PIN  | NAME      | ТҮРЕ | POWER-DOWN<br>STATE | FUNCTION                                                                                                                                                                                                                                                 |
|------|-----------|------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | MCLK      | 1    | Hi-Z                | Master Clock Input Pin (External).                                                                                                                                                                                                                       |
| 2    | BICK      | I    | Hi-Z                | Serial Audio Input Bit Clock Pin.                                                                                                                                                                                                                        |
| 3    | LRCK      | I    | Hi-Z                | Serial Audio Input Left/Right Clock Pin.                                                                                                                                                                                                                 |
| 4    | SDTI1     | I    | Hi-Z                | Serial Audio Input Data Port.                                                                                                                                                                                                                            |
| 5    | SDTI2     | I    | Hi-Z                | Serial Audio Input Data Port.                                                                                                                                                                                                                            |
| 6    | SDTI3     | I    | Hi-Z                | Serial Audio Input Data Port.                                                                                                                                                                                                                            |
| 7    | SDTI4     | I    | Hi-Z                | Serial Audio Input Data Port.                                                                                                                                                                                                                            |
| 8    | DZF       | о    | 50kΩ<br>Pull-Down   | Zero Detection Function Pin. When the input data of each channel reaches zero continuously within 8192 LRCK cycles, the DZF pin becomes high. When the input data of each channel does not reach zero, the DZF pin immediately reverts to the low level. |
| 9    | PDN       | I    | Hi-Z                | Power-Down Pin. When it is low, the SET4038 enters a power-down mode, and its control registers revert to their default settings.                                                                                                                        |
| 10   | SMUTE     | I    |                     | Soft Mute Pin in Parallel Control Mode. When SMUTE pin becomes high, the soft mute cycle is activated. When returning low, the output mute is released.                                                                                                  |
| 10   | CAD1      | I    | Hi-Z                | Chip Address 1 Pin in the I2C-Bus or 3-Wire Serial Control Mode. It serves as an identifier for the specific chip or device being addressed.                                                                                                             |
|      | SDA       | I/O  |                     | Control I/O Data Line in I2C-Bus Mode.                                                                                                                                                                                                                   |
| 11   | 11 CDTI I |      | Hi-7                | Output Data Pin. It is from the control port interface in 3-wire serial control mode.                                                                                                                                                                    |
| TDM0 |           | I    | 111 2               | Function Pin 0. It is used as the selector for the TDM mode in the parallel control mode.                                                                                                                                                                |



# **PIN DESCRIPTION (continued)**

| PIN            | NAME     | ТҮРЕ | POWER-<br>DOWN STATE | FUNCTION                                                                                                                                                            |
|----------------|----------|------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | SCI      | 1    |                      | Serial Control Interface Clock Pin in I2C-Bus Serial Control Mode. It is                                                                                            |
|                |          | I    |                      | used to clock control data bits into and out of the SET4038.                                                                                                        |
|                | CCLK     | I    |                      | Serial Control Interface Clock in 3-Wire Serial Control Mode. It is used to                                                                                         |
| 12             |          |      | Hi-Z                 | clock control data bits into the SET4038.                                                                                                                           |
|                | TDM1     | I    |                      | Function Pin 1. It is used as the selector for the 1DW mode in the parallel<br>Chip Address 0 Pin in the $l^2C_{\rm FBUS}$ Mode. It serves as an identifier for the |
|                | CAD0_I2C | I    |                      | specific chip or device being addressed.                                                                                                                            |
|                | CSN      |      |                      | Control Port Enable Pin in 3-Wire Serial Control Mode. It is used to                                                                                                |
| 13             | CSIN     | I    | Hi-Z                 | enable the control port interface on the SET4038.                                                                                                                   |
|                | DIF      | I    |                      | Audio Data Format Select Pin in Parallel Control Mode. Low: 32-bit MSB.<br>High: 32-bit I2S.                                                                        |
|                | PS I     |      |                      | Control Mode Select Pin (I2C Pin = High). Low: I2C-bus serial control                                                                                               |
| 14             |          | -    | Hi-Z                 | mode. High: parallel control mode.                                                                                                                                  |
|                | CAD0_SPI | I    |                      | Chip Address 0 Pin (I2C Pin = Low) in 3-Wire Serial Control Mode. It                                                                                                |
| 15             |          | 0    | Ці 7                 | Left Channel Analog Output Pin.                                                                                                                                     |
| 15             | AOUTLI   | 0    | HI-Z                 | Right Channel Analog Output Pin                                                                                                                                     |
| 10             | AUUTRI   | 0    | HI-Z                 |                                                                                                                                                                     |
| 17             | AOUTL2   | 0    | Hi-Z                 |                                                                                                                                                                     |
| 18             | AOUTR2   | 0    | Hi-Z                 | Right Channel Analog Output Pin.                                                                                                                                    |
| 19             | VREFH    | -    | Hi-Z                 | High Voltage Reference Input Pin. It should be connected to the AVDD.                                                                                               |
| 20             | VREFL    | -    | Hi-Z                 | Low Voltage Reference Input Pin. It should be connected to the VSS2.                                                                                                |
| 21             | VCOM     | 0    | 500Ω                 | Common Voltage Output Pin (AVDD × 1/2). Use a large external capacitor                                                                                              |
|                |          | •    | Pull-Down            | around 2.2µF to reduce power noise.                                                                                                                                 |
| 22             | VSS2     | -    | -                    | Analog Ground Pin. Ground for the analog circuitry in the chip.                                                                                                     |
| 23             | AVDD     | Р    | _                    | Analog Power Supply Pin. The voltage range is from 3.0V to 3.6V.                                                                                                    |
| 24             | AOUTL3   | 0    | Hi-Z                 | Left Channel Analog Output Pin.                                                                                                                                     |
| 25             | AOUTR3   | 0    | Hi-Z                 | Right Channel Analog Output Pin.                                                                                                                                    |
| 26             | AOUTL4   | 0    | Hi-Z                 | Left Channel Analog Output Pin.                                                                                                                                     |
| 27             | AOUTR4   | 0    | Hi-Z                 | Right Channel Analog Output Pin.                                                                                                                                    |
| 28             | TEST     | _    | 21.5kΩ<br>Pull-Down  | TEST pin. It should be connected to VSS1.                                                                                                                           |
| 29             | I2C      | I    | Hi-Z                 | Control Mode Select Pin. Low: 3-wire serial control mode. High: I2C-bus serial control mode or parallel control mode.                                               |
| 30             | TVDD     | Р    | -                    | Digital Power Supply Pin. The voltage range is from 2.3V to 3.6V.                                                                                                   |
| 31             | VSS1     | _    | -                    | Digital Ground Pin.                                                                                                                                                 |
| 22             | 1000     | 0    | 630Ω                 | LDO Output Pin. The pin requires a connection to ground via a 2.2uF                                                                                                 |
| 32             | LDOO     | 0    | Pull-Down            | capacitor with a tolerance of ±50%.                                                                                                                                 |
| Exposed<br>Pad | GND      | -    | -                    | The exposed pad on the bottom surface of the package should be<br>connected to the ground plane for optimized heat dissipation.                                     |

## NOTES:

1. I = input, O = output, I/O = input or output, P=power.

2. All digital inputs must be securely connected and not allowed to remain unconnected or floating



## **Electrical Characteristics**

(AVDD = TVDD = VREFH = 3.3V, VSS1 = VSS2 = 0V,  $T_A$  = +25°C, unless otherwise noted.) <sup>(1)</sup>

| PARAMETER                     | SYMBOL                                                        | C                                     | ONDITIONS                             | MIN | ТҮР  | MAX | UNITS |  |
|-------------------------------|---------------------------------------------------------------|---------------------------------------|---------------------------------------|-----|------|-----|-------|--|
| DAC Analog Output             | I                                                             |                                       |                                       |     |      |     |       |  |
| Resolution                    |                                                               |                                       |                                       |     | 32   |     | Bits  |  |
| Output Voltage <sup>(2)</sup> |                                                               |                                       |                                       |     | 2.8  |     | Vpp   |  |
| Total Harmonic Distortion     |                                                               | f <sub>s</sub> = 48kHz <sup>(3)</sup> |                                       |     | 91   |     |       |  |
| +Noise (OdBFS)                | THD + N                                                       | f <sub>s</sub> = 96kHz <sup>(3)</sup> |                                       |     | 90   |     | dB    |  |
|                               | -                                                             | f <sub>s</sub> = 192kHz               |                                       |     | 86   |     |       |  |
|                               |                                                               | f <sub>s</sub> = 48kHz (A-we          | ighted)                               |     | 110  |     |       |  |
| Dynamic Range (-60dBFS)       | DR                                                            | f <sub>s</sub> = 96kHz                |                                       |     | 103  |     | dB    |  |
|                               | -                                                             | f <sub>s</sub> = 192kHz               |                                       |     | 102  |     |       |  |
|                               |                                                               | f <sub>s</sub> = 48kHz (A-we          | ighted)                               |     | 110  |     |       |  |
| Signal to Noise Ratio         | SNR                                                           | f <sub>s</sub> = 96kHz                |                                       |     | 103  |     | dB    |  |
|                               | -                                                             | f <sub>s</sub> = 192kHz               |                                       |     | 103  |     |       |  |
| Interchannel Isolation        |                                                               | Isolation from ot                     | her LR channels                       |     | 109  |     | dB    |  |
|                               |                                                               | Isolation of LR fo                    | r a single channel                    |     | 105  |     |       |  |
| Interchannel Gain Mismatch    |                                                               |                                       |                                       |     | 0    |     | dB    |  |
| Load Resistance (4)           | RL                                                            |                                       |                                       |     | 5/10 |     | kΩ    |  |
| Load Capacitance              | CL                                                            |                                       |                                       |     | 40   |     | pF    |  |
|                               |                                                               | AVDD <sup>(5)</sup>                   |                                       |     | 65   |     |       |  |
| Power Supply Rejection        | PSR                                                           | TVDD( <sup>6)</sup>                   |                                       |     | 88   |     | dB    |  |
|                               | -                                                             | VREFH <sup>(7)</sup>                  |                                       |     | 82   |     |       |  |
| Power Supply                  | L                                                             |                                       | 1                                     |     |      | I   |       |  |
|                               | I <sub>AVDD</sub>                                             |                                       | f <sub>s</sub> = 48kHz, 96kHz, 192kHz |     | 14   |     |       |  |
|                               |                                                               | Normal                                | f <sub>s</sub> = 48kHz                |     | 14   |     | mA    |  |
| Power Supply Current          | I <sub>TVDD</sub>                                             | operation(PDN                         | f <sub>s</sub> = 96kHz                |     | 25   |     |       |  |
|                               |                                                               | pin = high)                           | f <sub>s</sub> = 192kHz               |     | 35   |     |       |  |
|                               | I <sub>VREFH</sub>                                            |                                       | f <sub>s</sub> = 48kHz, 96kHz, 192kHz |     | 2.5  |     |       |  |
| Power Supply Leakage Current  | I <sub>AVDD</sub> + I <sub>TVDD</sub> +<br>I <sub>VREFH</sub> | Power-down mo                         | de (PDN pin = low) <sup>(8)</sup>     |     | 80   |     | nA    |  |

#### NOTES:

1. Measurement frequency  $f_s = 48$ kHz, BICK =  $64 \times f_s$ , signal frequency = 1kHz, 32-bit data, 20Hz to 20kHz at  $f_s = 48$ kHz, 20Hz to 40kHz at  $f_s = 96$ kHz, 20Hz to 40kHz at  $f_s = 192$ kHz.

2. Full-scale output voltage is always proportional to AVDD. Specifically, it is calculated as AVDD multiplied by 0.86.

3. Test conditions 48kHz/96kHz are done in high-performance mode for optimized performance.

4. AC load =  $5k\Omega$  , DC load =  $10k\Omega$  .

5. The PSRR is measured by applying a 1kHz sine wave with a peak-to-peak amplitude of 50mV to the AVDD.

6. The PSRR is measured by applying a 1kHz sine wave with a peak-to-peak amplitude of 50mV to the TVDD.

7. The PSRR is measured by applying a 1kHz sine wave with a peak-to-peak amplitude of 50mV to the VREFH.

8. Quiescent current is measured when all digital input pins, inclusive of clock pins, are connected to VSS.



## **Electrical Characteristics**

(AVDD = TVDD = VREFH = 3.3V, VSS1 = VSS2 = 0V,  $T_A$ = +25°C , unless otherwise noted.) <sup>(1)</sup>

| PARAMETER                                                                | SYMBOL          | C             | CONDITIONS | MIN | ТҮР          | MAX | UNITS |  |  |  |
|--------------------------------------------------------------------------|-----------------|---------------|------------|-----|--------------|-----|-------|--|--|--|
| DC Characteristics                                                       |                 |               |            |     |              |     |       |  |  |  |
| High-Level Input Voltage                                                 | VIH             |               |            |     | 1.8          |     | V     |  |  |  |
| Low-Level Input Voltage                                                  | VIL             | -             |            |     | 1.3          |     | V     |  |  |  |
| High-Level Output Voltage                                                | V <sub>OH</sub> | DZF pin, Iout | r = -100μA |     | 3.29         |     | V     |  |  |  |
| Low-Level Output Voltage                                                 | V <sub>OL</sub> | DZF pin, IOUT | = 100µA    |     | 0.01         |     | V     |  |  |  |
| Input Leakage Current                                                    | I <sub>IN</sub> |               |            |     | 1            |     | μA    |  |  |  |
| Digital Filter Characteristics with Sharp Roll-Off Filter <sup>(2)</sup> |                 |               |            |     |              |     |       |  |  |  |
| (2)                                                                      | PB              |               | ±0.05dB    |     | 0~22         |     | kHz   |  |  |  |
| Pass Band (3)                                                            |                 |               | -3.0dB     |     | 23.5         |     | _     |  |  |  |
| Pass Band Ripple <sup>(4)</sup>                                          | PR              | -             |            |     | ±0.003       |     | dB    |  |  |  |
| Stop Band <sup>(3)</sup>                                                 | SB              | f - 1964      |            |     | 26.4         |     | kHz   |  |  |  |
| Stop Band Attenuation (6)                                                | SA              | - IS - 40KI12 |            |     | 80           |     | dB    |  |  |  |
| Group Delay (5)                                                          | GD              |               |            |     | 26.8         |     | 1/fS  |  |  |  |
| Frequency Response (Digital filter + SCF + SMF <sup>(6)</sup> )          |                 |               | 0 to 20kHz |     | -0.03 ~ 0.12 |     | dB    |  |  |  |
| Pass Band ( <sup>3)</sup>                                                | РВ              |               | ±0.05dB    |     | 0~44         |     | kHz   |  |  |  |
|                                                                          |                 | _             | -3.0dB     |     | 47           |     |       |  |  |  |
| <sup>(4)</sup> Pass Band Ripple                                          | PR              |               |            |     | ±0.003       |     | dB    |  |  |  |
| Stop Band <sup>(3)</sup>                                                 | SB              | f 96kHz       |            |     | 52.8         |     | kHz   |  |  |  |
| Stop Band Attenuation <sup>(6)</sup>                                     | SA              | 15 - 50KHZ    |            |     | 80           |     | dB    |  |  |  |
| Group Delay <sup>(5)</sup>                                               | GD              |               |            |     | 26.8         |     | 1/fs  |  |  |  |
| Frequency Response (Digital filter + SCF + SMF <sup>(6)</sup> )          |                 |               | 0 to 20kHz |     | -0.03 ~ 0.12 |     | dB    |  |  |  |
| Pass Band <sup>(3)</sup>                                                 | PB              |               | ±0.05dB    |     | 0~88         |     | kHz   |  |  |  |
|                                                                          |                 |               | -3.0dB     |     | 94           |     |       |  |  |  |
| <sup>(4)</sup> Pass Band Ripple                                          | PR              |               |            |     | ±0.003       |     | dB    |  |  |  |
| Stop Band <sup>(3)</sup>                                                 | SB              | f = 102kuz    |            |     | 105.6        |     | kHz   |  |  |  |
| Stop Band Attenuation <sup>(6)</sup>                                     | SA              | 15 - 132102   |            |     | 80           |     | dB    |  |  |  |
| Group Delay <sup>(5)</sup>                                               | GD              |               |            |     | 26.8         |     | 1/fs  |  |  |  |
| Frequency Response (Digital filter + SCF + SMF <sup>(6)</sup> )          |                 | 1             | 0 to 20kHz |     | -0.03 ~ 0.1  |     | dB    |  |  |  |

NOTES:

1. Measurement frequency  $f_s = 48$ kHz, BICK =  $64 \times f_{s,s}$  signal frequency = 1kHz, 32-bit data, 20Hz to 20kHz at  $f_s = 48$ kHz, 20Hz to 40kHz at  $f_s = 96$ kHz, 20Hz to 40kHz at  $f_s = 192$ kHz.

2. Specified by design and characterization, not production tested.

3. The frequencies of the pass band and stop band are scalable based on the sampling frequency  $f_s$ . For instance, PB =  $0.45 \times f_s$ , SB =  $0.55 \times f_s$ .

4. The pass band gain amplitude of the double oversampling filter is exhibited during the initial stage of the interpolator operation.

5. The delay time that arises from digital filtering is the duration from the moment when 16/20/24/32-bit data for both channels is set in the input register to the point when the analog signal is outputted.

6. When a 1kHz sine wave with 0dB is inputted, the output level is presumed to be 0dB.



## **Electrical Characteristics**

(AVDD = TVDD = VREFH = 3.3V, VSS1 = VSS2 = 0V,  $T_A$  = +25°C , unless otherwise noted.) <sup>(1)</sup>

| PARAMETER                                                          | SYMBOL     | CONDITIONS             |            | MIN | ТҮР       | MAX | UNITS |
|--------------------------------------------------------------------|------------|------------------------|------------|-----|-----------|-----|-------|
| Digital Filter Characteristics with                                | Slow Roll- | Off Filter (2)         |            |     |           |     |       |
|                                                                    | PB         |                        | ±0.05dB    |     | 0~14.58   |     | kHz   |
| Pass Band (9)                                                      |            |                        | -3.0dB     |     | 21.74     |     |       |
| <sup>(4)</sup> Pass Band Ripple                                    | PR         |                        |            |     | ±0.003    |     | dB    |
| Stop Band <sup>(3)</sup>                                           | SB         | fc= 48kHz              |            |     | 36        |     | kHz   |
| Stop Band Attenuation <sup>(6)</sup>                               | SA         | 13- 40112              |            |     | 88.66     |     | dB    |
| Group Delay <sup>(5)</sup>                                         | GD         |                        |            |     | 6.85      |     | 1/fS  |
| Frequency Response (Digital filter<br>+ SCF + SMF <sup>(6)</sup> ) |            |                        | 0 to 20kHz |     | -3.2 ~ 0  |     | dB    |
| Deve Devel (3)                                                     | PB         |                        | ±0.05dB    |     | 0~29.16   |     | kHz   |
| Pass Band (3)                                                      |            |                        | -3.0dB     |     | 43.48     |     |       |
| <sup>(4)</sup> Pass Band Ripple                                    | PR         |                        |            |     | ±0.003    |     | dB    |
| Stop Band <sup>(3)</sup>                                           | SB         | f <sub>c</sub> = 96kHz |            |     | 72        |     | kHz   |
| Stop Band Attenuation (6)                                          | SA         | - 13- 30KHZ            |            |     | 88.66     |     | dB    |
| Group Delay <sup>(5)</sup>                                         | GD         |                        |            |     | 6.85      |     | 1/fS  |
| Frequency Response (Digital filter<br>+ SCF + SMF <sup>(6)</sup> ) |            |                        | 0 to 20kHz |     | -3.2 ~ 0  |     | dB    |
|                                                                    | PB         |                        | ±0.05dB    |     | 0~58.32   |     | kHz   |
| Pass Band (9)                                                      |            |                        | -3.0dB     |     | 86.96     |     |       |
| <sup>(4)</sup> Pass Band Ripple                                    | PR         |                        |            |     | ±0.003    |     | dB    |
| Stop Band <sup>(3)</sup>                                           | SB         | fc= 192kHz             |            |     | 144       |     | kHz   |
| Stop Band Attenuation (6)                                          | SA         | 13-132K112             |            |     | 88.66     |     | dB    |
| Group Delay <sup>(5)</sup>                                         | GD         | 1                      |            |     | 6.85      |     | 1/fs  |
| Frequency Response (Digital filter<br>+ SCF + SMF <sup>(6)</sup> ) |            |                        | 0 to 20kHz |     | -0.03 ~ 0 |     | dB    |

NOTES:

1. Measurement frequency  $f_s = 48$ kHz, BICK =  $64 \times f_s$ , signal frequency = 1kHz, 32-bit data, 20Hz to 20kHz at  $f_s = 48$ kHz, 20Hz to 40kHz at  $f_s = 96$ kHz, 20Hz to 40kHz at  $f_s = 192$ kHz.

2. Specified by design and characterization, not production tested.

3. The frequencies of the pass band and stop band are scalable based on the sampling frequency  $f_s$ . For instance, PB =  $0.25 \times f_s$ , SB =  $0.75 \times f_s$ .

4. The pass band gain amplitude of the double oversampling filter is exhibited during the initial stage of the interpolator operation.

5. The delay time that arises from digital filtering is the duration from the moment when 16/20/24/32-bit data for both channels is set in the input register to the point when the analog signal is outputted.

6. When a 1kHz sine wave with 0dB is inputted, the output level is presumed to be 0dB.



## **Timing Characteristics**

(AVDD = TVDD = VREFH = 3.3V, VSS1 = VSS2 = 0V, T<sub>A</sub> = +25°C , unless otherwise noted.)

| PAR               | AMETER            | SYMBOL            | CONDITIONS                                                                            | MIN | ТҮР            | MAX | UNITS |
|-------------------|-------------------|-------------------|---------------------------------------------------------------------------------------|-----|----------------|-----|-------|
| Master Clock Tim  | ing               |                   |                                                                                       |     |                |     |       |
|                   | Frequency         | f <sub>ськ</sub>  |                                                                                       |     | 1.024 ~ 12.288 |     | MHz   |
|                   | Pulse Width Low   | t <sub>CLKL</sub> | $128 \times f_{SN}$ , $128 \times f_{SD}$ , $192 \times f_{SN}$ , $256 \times f_{SN}$ |     | 29.6           |     | ns    |
|                   | Pulse Width High  | t <sub>clkh</sub> |                                                                                       |     | 29.6           |     | ns    |
|                   | Frequency         | f <sub>ськ</sub>  |                                                                                       |     | 3.072 ~ 18.432 |     | MHz   |
| External Clock    | Pulse Width Low   | t <sub>clkl</sub> | $192 \times f_{SD}$ , $384 \times f_{SN}$                                             |     | 21.6           |     | ns    |
|                   | Pulse Width High  | t <sub>clkh</sub> |                                                                                       |     | 21.2           |     | ns    |
|                   | Frequency         | f <sub>ськ</sub>  |                                                                                       |     | 4.096 ~ 24.576 |     | MHz   |
|                   | Pulse Width Low   | t <sub>clkl</sub> | 512 × $f_{SN}$ , 256 × $f_{SD}$ , 128 × $f_{SQ}$                                      |     | 15.2           |     | ns    |
|                   | Pulse Width High  | t <sub>clkh</sub> |                                                                                       |     | 13.2           |     | ns    |
| LRCK Timing (Slav | e Mode)           |                   |                                                                                       |     |                |     |       |
|                   | Normal Speed Mode | f <sub>sn</sub>   |                                                                                       |     | 8~48           |     | kHz   |
| LRCK Frequency    | Double Speed Mode | f <sub>sD</sub>   |                                                                                       |     | 48 ~ 96        |     | kHz   |
|                   | Quad Speed Mode   | f <sub>sq</sub>   | Normal mode (TDM1-0 bits = 00)                                                        |     | 96 ~ 192       |     | kHz   |
| Duty Cycle        |                   | D <sub>uty</sub>  |                                                                                       |     | 50             |     | %     |
|                   | Normal Speed Mode | f <sub>sn</sub>   |                                                                                       |     | 8 ~ 48         |     | kHz   |
| LRCK Frequency    | Double Speed Mode | f <sub>SD</sub>   |                                                                                       |     | 48 ~ 96        |     | kHz   |
|                   | Quad Speed Mode   | f <sub>sq</sub>   | TDM128 mode (TDM1-0 bits = 01)                                                        |     | 96 ~ 192       |     | kHz   |
| High Time         |                   | t <sub>LRH</sub>  |                                                                                       |     | 35.2           |     | ns    |
| Low Time          |                   | t <sub>LRL</sub>  |                                                                                       |     | 35.2           |     | ns    |
| LRCK Frequency    | Normal Speed Mode | f <sub>sn</sub>   |                                                                                       |     | 8 ~ 48         |     | kHz   |
|                   | Double Speed Mode | f <sub>sD</sub>   | TDM256 mode (TDM1 0 bits 10)                                                          |     | 48 ~ 96        |     | kHz   |
| High Time         |                   | t <sub>LRH</sub>  | $1DM256 \mod (1DM1-0 \operatorname{bits} = 10)$                                       |     | 35.2           |     | ns    |
| Low Time          | Low Time          |                   |                                                                                       |     | 35.2           |     | ns    |
| LRCK Frequency    | Normal Speed Mode | f <sub>sn</sub>   |                                                                                       |     | 8~48           |     | kHz   |
| High Time         | High Time         |                   | TDM512 mode (TDM1-0 bits = 11)                                                        |     | 35.2           |     | ns    |
| Low Time          |                   | t <sub>LRL</sub>  |                                                                                       |     | 35.2           |     | ns    |



## **Timing CHharacteristics**

(AVDD = TVDD = VREFH = 3.3V, VSS1 = VSS2 = 0V, T<sub>A</sub> = +25°C , unless otherwise noted.)

| PAR                                | AMETER              | SYMBOL            | CONDITIONS                     | MIN | ТҮР   | MAX | UNITS |
|------------------------------------|---------------------|-------------------|--------------------------------|-----|-------|-----|-------|
| Audio Interface                    | Timing              |                   |                                |     |       |     |       |
|                                    | Normal Speed Mode   |                   |                                |     | 81.6  |     | ns    |
| BICK Period                        | Double Speed Mode   | t <sub>BCK</sub>  |                                |     | 82    |     | ns    |
|                                    | Quad Speed Mode     |                   |                                |     | 81.6  |     | ns    |
| BICK Pulse Width                   | n Low               | t <sub>BCKL</sub> |                                |     | 14    |     | ns    |
| BICK Pulse Width                   | n High              | t <sub>BCKH</sub> | Normal mode (TDM1-0 bits = 00) |     | 14.8  |     | ns    |
| LRCK Edge to BIC                   | CK 个 <sup>(1)</sup> | tLRB              |                                |     | 5     |     | ns    |
| BICK 个 to LRCK                     | Edge <sup>(1)</sup> | t <sub>BLR</sub>  |                                |     | 5     |     | ns    |
| SDTI Hold Time                     |                     | t <sub>SDH</sub>  |                                |     | 5     |     | ns    |
| SDTI Setup Time                    |                     | t <sub>SDS</sub>  |                                |     | 4.8   |     | ns    |
|                                    | Normal Speed Mode   |                   |                                |     | 163.2 |     | ns    |
| BICK Period                        | Double Speed Mode   | t <sub>BCK</sub>  |                                |     | 81.6  |     | ns    |
|                                    | Quad Speed Mode     |                   |                                |     | 41.2  |     | ns    |
| BICK Pulse Width                   | n Low               | tBCKL             |                                |     | 14.4  |     | ns    |
| BICK Pulse Width                   | n High              | t <sub>вскн</sub> | TDM128 mode (TDM1-0 bits =     |     | 14.6  |     | ns    |
| LRCK Edge to BICK 个 <sup>(1)</sup> |                     | t <sub>BLR</sub>  | 01)                            |     | 4.6   |     | ns    |
| BICK 个 to LRCK Edge <sup>(1)</sup> |                     | t <sub>LRB</sub>  |                                |     | 4.8   |     | ns    |
| SDTI Hold Time                     | SDTI Hold Time      |                   |                                |     | 4.8   |     | ns    |
| SDTI Setup Time                    |                     | t <sub>SDS</sub>  |                                |     | 4.2   |     | ns    |
| DICK Deried                        | Normal Speed Mode   | t <sub>BCK</sub>  |                                |     | 81.6  |     | ns    |
| BICK PERIOD                        | Double Speed Mode   |                   |                                |     | 40.8  |     | ns    |
| BICK Pulse Width                   | n Low               | t <sub>BCKL</sub> |                                |     | 14.4  |     | ns    |
| BICK Pulse Width                   | n High              | t <sub>вскн</sub> | TDM256 mode (TDM1-0 bits =     |     | 15.6  |     | ns    |
| LRCK Edge to BIC                   | СК 个 (1)            | t <sub>BLR</sub>  | 10)                            |     | 4.6   |     | ns    |
| BICK 个 to LRCK                     | Edge <sup>(1)</sup> | t <sub>LRB</sub>  |                                |     | 5     |     | ns    |
| SDTI Hold Time                     |                     | t <sub>SDH</sub>  |                                |     | 5     |     | ns    |
| SDTI Setup Time                    |                     | t <sub>SDS</sub>  |                                |     | 5     |     | ns    |
| BICK Period                        | Normal Speed Mode   | t <sub>BCK</sub>  |                                |     | 40.8  |     | ns    |
| BICK Pulse Width                   | n Low               | t <sub>BCKL</sub> |                                |     | 14.8  |     | ns    |
| BICK Pulse Width                   | n High              | t <sub>вскн</sub> | TDM512 mode (TDM1-0 hits =     |     | 14.8  |     | ns    |
| LRCK Edge to BIC                   | СК 个 (1)            | t <sub>BLR</sub>  | 11)                            |     | 4.8   |     | ns    |
| BICK 个 to LRCK                     | Edge (1)            | t <sub>LRB</sub>  |                                |     | 5     |     | ns    |
| SDTI Hold Time                     |                     | t <sub>SDH</sub>  |                                |     | 5     |     | ns    |
| SDTI Setup Time                    |                     | t <sub>SDS</sub>  |                                |     | 4.6   |     | ns    |

NOTE:

1. The occurrence of the BICK rising edge does not overlap with the LRCK edge, ensuring proper synchronization and avoiding potential conflicts.

## Timing Characteristics

(AVDD = TVDD = VREFH = 3.3V, VSS1 = VSS2 = 0V, T<sub>A</sub> = +25°C , unless otherwise noted.)

| PARAMETER                                          | SYMBOL              | CONDITIONS                 | MIN | ТҮР   | MAX | UNITS |
|----------------------------------------------------|---------------------|----------------------------|-----|-------|-----|-------|
| Control Interface Timing (3-Wire Serial            | Mode)               |                            |     |       |     |       |
| CCLK Period                                        | t <sub>сск</sub>    |                            |     | 190   |     | ns    |
| CCLK Pulse Width Low                               | t <sub>сскі</sub>   |                            |     | 66.4  |     | ns    |
| CCLK Pulse Width High                              | t <sub>сскн</sub>   |                            |     | 68    |     | ns    |
| CDTI Setup Time                                    | t <sub>CDS</sub>    |                            |     | 20.8  |     | ns    |
| CDTI Hold Time                                     | t <sub>cdh</sub>    |                            |     | 21.6  |     | ns    |
| CSN High Time                                      | t <sub>csw</sub>    |                            |     | 128   |     | ns    |
| CSN 个 to CCLK 个                                    | t <sub>css</sub>    |                            |     | 10.4  |     | ns    |
| CCLK 个 to CSN 个                                    | t <sub>сsн</sub>    |                            |     | 36.8  |     | ns    |
| Control Interface Timing (I <sup>2</sup> C-Bus Mod | de)                 |                            |     | 1     |     |       |
| SCL Clock Frequency                                | f <sub>SCL</sub>    |                            |     | 400   |     | kHz   |
| Bus Free Time between Transmissions                | t <sub>BUF</sub>    |                            |     | 0.4   |     | μs    |
| Start Condition Hold Time                          | t <sub>hd_sta</sub> | Prior to first clock pulse |     | 0.165 |     | μs    |
| Clock Low Time                                     | t <sub>LOW</sub>    |                            |     | 0.78  |     | μs    |
| Clock High Time                                    | t <sub>HIGH</sub>   |                            |     | 0.41  |     | μs    |
| Setup Time for Repeated Start                      | t <sub>su_sta</sub> |                            |     | 0.1   |     | μs    |
| Condition                                          |                     |                            |     |       |     |       |
| SDA Hold Time from SCL Falling <sup>(1)</sup>      | t <sub>HD_DAT</sub> |                            |     | 0     |     | μs    |
| SDA Setup Time from SCL Rising                     | t <sub>su_dat</sub> |                            |     | 0.1   |     | μs    |
| Rise Time of Both SDA and SCL Lines                | t <sub>R</sub>      |                            |     | 1     |     | μs    |
| Fall Time of Both SDA and SCL Lines                | t <sub>F</sub>      |                            |     | 0.3   |     | μs    |
| Setup Time for Stop Condition                      | t <sub>su_sto</sub> |                            |     | 0.15  |     | μs    |
| Pulse Width of Spike Noise Suppressed              | t <sub>sp</sub>     |                            |     | 50    |     | ns    |
| by Input Filter                                    |                     |                            |     |       |     |       |
| Capacitive Load on Bus                             | CB                  |                            |     | 400   |     | pF    |
| Power-Down/Reset Timing                            |                     |                            |     |       |     |       |
| PDN Pulse Width <sup>(2)</sup>                     | t <sub>APD</sub>    |                            |     | 600   |     | ns    |
| PDN Reject Pulse Width                             | t <sub>RPD</sub>    |                            |     | 50    |     | ns    |

NOTES:

1. The data must be maintained for an adequate duration to span the 300ns transition period of SCL, ensuring stable and accurate transmission.

2. To reset the SET4038, the PDN pin is recommended to be low during power-up, and this low state must be maintained for a duration exceeding 600ns to ensure a complete reset. Conversely, a low pulse lasting less than 50ns will not trigger a reset in the SET4038.

# **Timing Diagram**



Figure 1. Non-TDM Clock Timing







Figure 3. Non-TDM Clock Timing (Audio Interface)

# **Timing Diagram(continued)**



Figure 4. TDM Clock Timing (Audio Interface)



Figure 5. 3-Wire Serial Mode Command Input Timing (Write Only)



Figure 6. 3-Wire Serial Mode Data Input Timing (Write Only)



# Timing Diagram(continued)



Figure 8. Power-Down/Reset Timing

110dB, 192kHz, 8-Channel Audio DAC

## **TYPICAL PERFORMANCE CHARACTERISTICS**

 $T_A$  = +25°C , AVDD = TVDD = VREFH = 3.3V, VSS1 = VSS2 = 0V. Measurement frequency  $f_S$  = 48kHz, BICK = 64  $\times$   $f_S$  =3.072MHz, MCLK = 12.288MHz, signal frequency = 1kHz, 20Hz to 20kHz at 48kHz, 32-bit data, DFS2-0 bits = 001,  $I^2S$  mode.



datasheet Rev. 1.1

## **Typical Characteristics**



## **DETAILED DESCRIPTION**

## System Clock

The SET4038 requires three external clocks (MCLK, LRCK and BICK) for its operation. These clocks are crucial for ensuring the proper synchronization and transmission of data within the device. MCLK should be synchronized with LRCK and BICK, even if this stage is not the most important. The DFS2-0 bits in Table 1 are responsible for determining the sampling speed. At each specific sampling speed, the frequency of MCLK is automatically configured according toTable 2, ensuring seamless and accurate data transmission.

When the reset is exited during power-up (PDN pin = low-to-high state), the SET4038 remains in power-down mode until both MCLK and LRCK signals are entered The SET4038 is configured to operate in manual mode upon power-up, with the PDN pin transitioning from a low-to-high state. When it comes to adjusting the clock settings, it is crucial to reset the SET4038 either by manipulating the PDN pin or by utilizing the RSTN bit. This reset ensures that the device can accommodate the new clock configurations and operate reliably.

In case that the clock is paused, a click noise will emit when it is restarted. If the click noise poses an issue for system applications, it is recommended to externally mute the digital output.

## Manual Setting Mode

The SET4038 automatically detects the frequency of the MCLK, and the DFS2-0 bits in Table 1 are responsible for configuring the sampling rate. It is crucial to provide the appropriate MCLK frequency externally for each sampling speed, as specified in Table 2, to ensure accurate and reliable data transmission. The SET4038 is configured to operate in manual mode upon power-up, with the PDN pin transitioning from a low-to-high state. When the DFS2-0 bits undergo changes, it is necessary to reset the SET4038 through the RSTN bit.

| DFS2 Bit | DFS1 Bit | DFS0 Bit | Sampling Speed Mode (fS) |                         |  |
|----------|----------|----------|--------------------------|-------------------------|--|
| 0        | 0        | 0        | Normal Speed Mode        | 8kHz to 48kHz (Default) |  |
| 0        | 0        | 1        | Double Speed Mode        | 48kHz to 96kHz          |  |
| 0        | 1        | 0        | Quad Speed Mode          | 96kHz to 192kHz         |  |

#### Table 1. Sampling Speed in Manual Setting Mode

## Table 2. System Clock Example in Manual Setting Mode

| LRCK (kHz) |          |                      |                             |          |          |          |                     |
|------------|----------|----------------------|-----------------------------|----------|----------|----------|---------------------|
| fs         | 128 × fs | 192 × f <sub>s</sub> | <b>256</b> × f <sub>s</sub> | 384 × fs | 512 × fs | 768 × fs | Sampling Speed Mode |
| 8.0        | 1.0240   | 1.5360               | 2.0480                      | 3.0720   | 4.0960   | 6.1440   | Normal Speed Mode   |
| 44.1       | 5.6448   | 8.4672               | 11.2896                     | 16.9344  | 22.5792  | N/A      | Normal Speed Mode   |
| 48.0       | 6.1440   | 9.2160               | 12.2880                     | 18.4320  | 24.5760  | N/A      | Normal Speed Mode   |
| 88.2       | 11.2896  | 16.9344              | 22.5792                     | N/A      | N/A      | N/A      | Double Speed Mode   |
| 96.0       | 12.2880  | 18.4320              | 24.5760                     | N/A      | N/A      | N/A      | Double Speed Mode   |
| 176.4      | 22.5792  | N/A                  | N/A                         | N/A      | N/A      | N/A      | Quad Speed Mode     |
| 192.0      | 24.5760  | N/A                  | N/A                         | N/A      | N/A      | N/A      | Quad Speed Mode     |

#### De-emphasis Filter

The SET4038 incorporates a digital de-emphasis filter, implemented as an IIR filter with a constant time (tC) of either 50µs or 15µs. Notably, this filter is exclusively compatible with the normal speed mode. It supports three distinct sampling frequencies (32kHz, 44.1kHz and 48kHz). Individual settings for each DAC, namely DAC1 (SDTI1), DAC2 (SDTI2), DAC3 (SDTI3) and DAC4 (SDTI4), allow for tailored de-emphasis configuration through register adjustments. This flexibility ensures that the SET4038 can accommodate a range of audio processing needs. **Table3. De-emphasis Filter Control** 

| Mode | Sampling Speed Mode | DEM11 (DEM41-21) | DEM10 (DEM40-20) | DEM           |
|------|---------------------|------------------|------------------|---------------|
| 0    | Normal Speed Mode   | 0                | 0                | 44.1kHz       |
| 1    | Normal Speed Mode   | 0                | 1                | OFF (Default) |
| 2    | Normal Speed Mode   | 1                | 0                | 48kHz         |
| 3    | Normal Speed Mode   | 1                | 1                | 32kHz         |

#### Audio Interface Format

During operation, it is advisable not to alter the TDM1-0 bits, DIF2-0 bits, SDS2-0 bits, TDM1-0 pins and DIF pin settings.

#### Normal Mode (TDM1-0 Bits = 00)

Audio data from eight channels is streamed into the SET4038 through the SDTI1-4 pins, utilizing the BICK and LRCK inputs for synchronization. The SDS2-0 bits serve to select the appropriate data stream. Furthermore, the device supports eight distinct data formats, which can be chosen by using the DIF2-0 bits as detailed inTable 4. This versatility allows for seamless integration with a wide range of audio sources and processing requirements. Regardless of the format, the serial data is always transmitted with the most significant bit (MSB) first, in 2's complement format, and is latched on the rising edge of BICK.

#### TDM128 Mode (TDM1-0 Bits = 01)

Audio data from eight channels is streamed into the SET4038 through the SDTI1-2 pins, utilizing the BICK and LRCK inputs for synchronization. The SDS2-0 bits serve to select the appropriate data stream. The inputs to the SDTI3-4 pins are disregarded during the data streaming process. The BICK frequency remains static at 128  $\times$  fS, providing a constant synchronization rate. Furthermore, the device supports six distinct data formats, which can be chosen by using the DIF2-0 bits as detailed in Table 4. Regardless of the format, the serial data is always transmitted with the most significant bit (MSB) first, in 2's complement format, and is latched on the rising edge of BICK.

#### TDM256 Mode (TDM1-0 Bits = 10)

Audio data from sixteen channels is streamed into the SET4038 through the SDTI1-2 pins, utilizing the BICK and LRCK inputs for synchronization. The SDS2-0 bits serve to select the appropriate data stream. The inputs to the SDTI3-4 pins are disregarded during the data streaming process. The BICK frequency remains static at  $256 \times fS$ , providing a constant synchronization rate. Furthermore, the device supports six distinct data formats, which can be chosen by using the DIF2-0 bits as detailed in Table 4. Regardless of the format, the serial data is always transmitted with the most significant bit (MSB) first, in 2's complement format, and is latched on the rising edge of BICK.

#### TDM512 Mode (TDM1-0 Bits = 11)

Audio data from sixteen channels is streamed into the SET4038 through the SDTI1 pin, utilizing the BICK and LRCK inputs for synchronization. The SDS2-0 bits serve to select the appropriate data stream. The inputs to the SDTI3-4 pins are disregarded during the data streaming process. The BICK frequency remains static at 512  $\times$  f<sub>s</sub>, providing a constant synchronization rate. Furthermore, the device supports six distinct data formats, which can be chosen by using the DIF2-0 bits as detailed in Table 4. Regardless of the format, the serial data is always transmitted with the most significant bit (MSB) first, in 2's complement format, and is latched on the rising edge of BICK.



## Table 4. Audio Data Format

| Mode                  |    | TDM1 | TDM0 | DIF2 | DIF1 | DIFO | LRCK         | BICK                  | SDTI Format                        |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|-----------------------|----|------|------|------|------|------|--------------|-----------------------|------------------------------------|----------------------|-----|---|------------|----------------------|----------------------|----------------------|------------------------------------|--|--|--|--|--|--|--|--|--|---|---|---|------------|
|                       | 0  |      |      | 0    | 0    | 0    | H/L          | ≥ 32 × f <sub>s</sub> | 16-Bit LSB Justified               |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | 1  |      |      | 0    | 0    | 1    | H/L          | ≥ 40 × f <sub>s</sub> | 20-Bit LSB Justified               |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | 2  |      |      | 0    | 1    | 0    | H/L          | ≥ 48 × f <sub>s</sub> | 24-Bit MSB Justified               |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | 2  |      |      | 0    | 1    | 1    | L/H          | $32 \times f_s$       | 16-Bit I <sup>2</sup> S Compatible |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
| Normal <sup>(1)</sup> | 3  | 0    | 0    | 0    | T    | T    | L/H          | ≥ 48 × f <sub>s</sub> | 24-Bit I <sup>2</sup> S Compatible |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | 4  |      |      | 1    | 0    | 0    | H/L          | ≥ 48 × f <sub>s</sub> | 24-Bit LSB Justified               |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | 5  |      |      | 1    | 0    | 1    | H/L          | ≥ 64 × f <sub>s</sub> | 32-Bit LSB Justified               |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | 6  |      |      | 1    | 1    | 0    | H/L          | ≥ 64 × f <sub>s</sub> | 32-Bit MSB Justified               |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | 7  |      |      | 1    | 1    | 1    | L/H          | ≥ 64 × fs             | 32-Bit I <sup>2</sup> S Compatible |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | -  |      |      | 0    | 0    | 0    | $\uparrow$   | 128 × f <sub>s</sub>  | N/A                                |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | -  |      |      | 0    | 0    | 1    | $\uparrow$   | 128 × f <sub>s</sub>  | N/A                                |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
| TDM128                | 8  |      |      | 0    | 1    | 0    | $\uparrow$   | 128 × f <sub>s</sub>  | 24-Bit MSB Justified               |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | 9  | 0    | 1    | 0    | 1    | 1    | $\checkmark$ | 128 × f <sub>s</sub>  | 24-Bit I <sup>2</sup> S Compatible |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | 10 | 0    |      | 1    | 0    | 0    | $\uparrow$   | 128 × f <sub>s</sub>  | 24-Bit LSB Justified               |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | 11 |      |      | 1    | 0    | 1    | $\uparrow$   | 128 × f <sub>s</sub>  | 32-Bit LSB Justified               |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | 12 |      |      |      |      |      |              |                       |                                    | 1                    | 1   | 0 | $\uparrow$ | 128 × f <sub>s</sub> | 32-Bit MSB Justified |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | 13 |      |      | 1    | 1    | 1    | $\checkmark$ | 128 × f <sub>s</sub>  | 32-Bit I <sup>2</sup> S Compatible |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | -  |      |      |      |      | 0    | 0            | 0                     | $\uparrow$                         | 256 × f <sub>s</sub> | N/A |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | -  |      |      |      |      |      |              |                       |                                    |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  | 0 | 0 | 1 | $\uparrow$ |
|                       | 14 |      |      | 0    | 1    | 0    | $\uparrow$   | 256 × f <sub>s</sub>  | 24-Bit MSB Justified               |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
| TDMAC                 | 15 | 1    | 0    | 0    | 1    | 1    | $\checkmark$ | 256 × f <sub>s</sub>  | 24-Bit I <sup>2</sup> S Compatible |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
| I DIVI256             | 16 | 1    | 0    | 1    | 0    | 0    | $\uparrow$   | 256 × f <sub>s</sub>  | 24-Bit LSB Justified               |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | 17 |      |      | 1    | 0    | 1    | $\uparrow$   | 256 × f <sub>s</sub>  | 32-Bit LSB Justified               |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | 18 |      |      | 1    | 1    | 0    | $\uparrow$   | 256 × f <sub>s</sub>  | 32-Bit MSB Justified               |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | 19 |      | -    |      |      |      |              |                       |                                    |                      | -   | 1 | 1          | 1                    | $\downarrow$         | 256 × f <sub>s</sub> | 32-Bit I <sup>2</sup> S Compatible |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | -  |      |      | 0    | 0    | 0    | $\uparrow$   | 512 × f <sub>s</sub>  | N/A                                |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | -  |      |      | 0    | 0    | 1    | $\uparrow$   | 512 × f <sub>s</sub>  | N/A                                |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | 20 |      |      | 0    | 1    | 0    | $\uparrow$   | 512 × f <sub>s</sub>  | 24-Bit MSB Justified               |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
| TD14542               | 21 |      |      | 0    | 1    | 1    | $\downarrow$ | 512 × f <sub>s</sub>  | 24-Bit I <sup>2</sup> S Compatible |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
| I DIVI512             | 22 | 1    | L    | 1    | 0    | 0    | $\uparrow$   | 512 × f <sub>s</sub>  | 24-Bit LSB Justified               |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | 23 |      |      | 1    | 0    | 1    | $\uparrow$   | 512 × f <sub>s</sub>  | 32-Bit LSB Justified               |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | 24 |      |      | 1    | 1    | 0    | $\uparrow$   | 512 × f <sub>s</sub>  | 32-Bit MSB Justified               |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |
|                       | 25 |      |      | 1    | 1    | 1    | $\downarrow$ | 512 × f <sub>s</sub>  | 32-Bit I <sup>2</sup> S Compatible |                      |     |   |            |                      |                      |                      |                                    |  |  |  |  |  |  |  |  |  |   |   |   |            |

NOTE:

1. BICK refers to the requirement that the bit input to each channel must be greater than the length of setting format.















Audio Data Format Timing (Mode 8, 11 and 12)



## Audio Data Format Timing (Mode 9 and 13)



Audio Data Format Timing (Mode 10)





Audio Data Format Timing (Mode 14, 17 and 18)



Audio Data Format Timing (Mode 15 and 19)



Audio Data Format Timing (Mode 16)





Audio Data Format Timing (Mode 20, 23 and 24)









## **Data Select**

## The playback channel of each DAC is controlled by SDS2-0 bits.



#### Normal Mode Data Slot



#### TDM128 Mode Data Slot







## TDM512 Mode Data Slot



110dB, 192kHz, 8-Channel Audio DAC

## **DETAILED DESCRIPTION (continued)**

Table 5. Data Select (X: Do Not Care)

|        | 0000 | 0004 |      | DAC1 |      | DAC2 |      | DAC3 |      | DAC4 |      |
|--------|------|------|------|------|------|------|------|------|------|------|------|
| Made   | SDS2 | SDS1 | SDS0 | Lch  | Rch  | Lch  | Rch  | Lch  | Rch  | Lch  | Rch  |
| Normal | Х    | 0    | 0    | L1ch | R1ch | L2ch | R2ch | L3ch | R3ch | L4ch | R4ch |
|        | Х    | 0    | 1    | L2ch | R2ch | L3ch | R3ch | L4ch | R4ch | L1ch | R1ch |
|        | Х    | 1    | 0    | L3ch | R3ch | L4ch | R4ch | L1ch | R1ch | L2ch | R2ch |
|        | Х    | 1    | 1    | L4ch | R4ch | L1ch | R1ch | L2ch | R2ch | L3ch | R3ch |
|        | Х    | 0    | 0    | L1ch | R1ch | L2ch | R2ch | L3ch | R3ch | L4ch | R4ch |
| TDM128 | Х    | 0    | 1    | L2ch | R2ch | L3ch | R3ch | L4ch | R4ch | L1ch | R1ch |
|        | Х    | 1    | 0    | L3ch | R3ch | L4ch | R4ch | L1ch | R1ch | L2ch | R2ch |
|        | Х    | 1    | 1    | L4ch | R4ch | L1ch | R1ch | L2ch | R2ch | L3ch | R3ch |
|        | 0    | 0    | 0    | L1ch | R1ch | L2ch | R2ch | L3ch | R3ch | L4ch | R4ch |
|        | 0    | 0    | 1    | L2ch | R2ch | L3ch | R3ch | L4ch | R4ch | L5ch | R5ch |
|        | 0    | 1    | 0    | L3ch | R3ch | L4ch | R4ch | L5ch | R5ch | L6ch | R6ch |
| TDM256 | 0    | 1    | 1    | L4ch | R4ch | L5ch | R5ch | L6ch | R6ch | L7ch | R7ch |
|        | 1    | 0    | 0    | L5ch | R5ch | L6ch | R6ch | L7ch | R7ch | L8ch | R8ch |
|        | 1    | 0    | 1    | L6ch | R6ch | L7ch | R7ch | L8ch | R8ch | L1ch | R1ch |
|        | 1    | 1    | 0    | L7ch | R7ch | L8ch | R8ch | L1ch | R1ch | L2ch | R2ch |
|        | 1    | 1    | 1    | L8ch | R8ch | L1ch | R1ch | L2ch | R2ch | L3ch | R3ch |
|        | 0    | 0    | 0    | L1ch | R1ch | L2ch | R2ch | L3ch | R3ch | L4ch | R4ch |
|        | 0    | 0    | 1    | L2ch | R2ch | L3ch | R3ch | L4ch | R4ch | L5ch | R5ch |
|        | 0    | 1    | 0    | L3ch | R3ch | L4ch | R4ch | L5ch | R5ch | L6ch | R6ch |
| TDM512 | 0    | 1    | 1    | L4ch | R4ch | L5ch | R5ch | L6ch | R6ch | L7ch | R7ch |
|        | 1    | 0    | 0    | L5ch | R5ch | L6ch | R6ch | L7ch | R7ch | L8ch | R8ch |
|        | 1    | 0    | 1    | L6ch | R6ch | L7ch | R7ch | L8ch | R8ch | L1ch | R1ch |
|        | 1    | 1    | 0    | L7ch | R7ch | L8ch | R8ch | L1ch | R1ch | L2ch | R2ch |
|        | 1    | 1    | 1    | L8ch | R8ch | L1ch | R1ch | L2ch | R2ch | L3ch | R3ch |

The SET4038 incorporates a high-performance mode, which can be activated by adjusting specific combinations of LRCK, BICK and MCLK frequencies in conjunction with the DFS2-0 bits. In this mode, the THD + N dynamic performance parameters are enhanced. For detailed configuration relationships, please refer toTable 6below.

#### Table 6. Detailed Configuration of High-Performance Mode

| High-Performance Mode |  |  |  |  |  |  |
|-----------------------|--|--|--|--|--|--|
| /ICLK (MHz)           |  |  |  |  |  |  |
| 12.288                |  |  |  |  |  |  |
| 12.288                |  |  |  |  |  |  |
| 12.288                |  |  |  |  |  |  |
| 12.288                |  |  |  |  |  |  |
| 12.288                |  |  |  |  |  |  |
| 12.288                |  |  |  |  |  |  |
| 12.288                |  |  |  |  |  |  |
| 12.288                |  |  |  |  |  |  |
| 12.288                |  |  |  |  |  |  |
| 12.288                |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |



#### Digital Filter

Three distinct digital filters are offered for playback, offering a diverse range of sound hues to choose from . The selection of these digital filters is determined by the SLOW bit and the SSLOW bit.

#### Table 7. Digital Filter Setting

| SSLOW Bit | SLOW Bit | Mode                            |  |  |  |
|-----------|----------|---------------------------------|--|--|--|
| 0         | 0        | Sharp Roll-Off Filter (Default) |  |  |  |
| 0         | 1        |                                 |  |  |  |
| 1         | 1        | Slow Roll-Off Filter            |  |  |  |
| 1         | 0        | Super Slow Roll-Off Mode        |  |  |  |

#### Zero Detection

The SET4038 boasts a unique feature of channel-independent zero detection. This functionality allows for the selection of zero detection channels, the AOUTL1-4 and AOUTR1-4 pins, through the control 5 and 6 registers (comprising the L1-4 bits and R1-4 bits). If the input data remains constantly at zero for 8192 consecutive LRCK cycles in any given channels, the DZF pin will switch to the high state. If the input data of each channel does not reach zero, the DZF pin will promptly revert to the low state. Additionally, when the RSTN bit is set to 0, the DZF pin of both channels will transition to high. However, when the RSTN bit returns to 1, the DZF pin of both channels will revert to low after approximately 4-5/fs. Furthermore, the DZF bit allows for the inversion of the polarity of the DZF pin. It is worth noting that when RSTN bit is set to 1 if all channels are disabled, the outputs of the DZF pin will not be zero. **Table 8. DZF Pin Function** 

# DZF BitDZF PinData0LowNot Zero (1)0HighZero Detect (2)1HighNot Zero1LowZero Detect

NOTES:

1. Not zero: any one of the zero detection channels, which is established by L1-4 bits and R1-4 bits, fails to detect zero.

2. Zero detect: one of the zero detection channels configured through the L1-4 bits and R1-4 bits successfully detects the presence of zero.

#### **Digital Volume Function**

The SET4038 incorporates a digital attenuator that operates independently of any specific channel, offering 256 distinct attenuation levels with increments of 0.5dB. The attenuation level for each DAC4-1 can be individually configured by using the ATT7-0 bits located in register 03H, 04H, 0FH to 14H, as outlined inTable 9.

#### Table 9. Attenuation Level Applied by Digital Attenuator

| ATT7-0 Bits (Register 03H, 04H, 0FH to 14H) | Attenuation Level |
|---------------------------------------------|-------------------|
| FFH                                         | +OdB              |
| FEH                                         | -0.5dB            |
| FDH                                         | -1.0dB            |
|                                             |                   |
| 02H                                         | -126.5dB          |
| 01H                                         | -127.0dB          |
| 00H                                         | Mute (-∞)         |



The transition time between the set values of the ATT7-0 bits can be adjusted using the ATS1-0 bits, as detailed in Table 10. In modes 0, 1 and 2, the transition between set values is designed as a soft transition, effectively eliminating switching noise during the transition process.

| Mode | ATS1 Bit | ATS0 Bit | ATT Speed           |
|------|----------|----------|---------------------|
| 0    | 0        | 0        | 4080/fs (Default)   |
| 1    | 0        | 1        | 2040/f <sub>s</sub> |
| 2    | 1        | 0        | 510/f <sub>s</sub>  |
| 3    | 1        | 1        | 255/fs              |

#### Table 10. Transition Time for Digital Volume Adjustment

In mode 0, the transition between set values occurs smoothly, spanning 4080 distinct levels. Completing the transition from FFH to 00H requires a duration of 4080/fS, which translates to approximately 85ms when the sampling frequency (fS) is set to 48kHz. Additionally, if the PDN pin is set to low, the ATT7-0 bits will automatically reset to FFH.

If a change is made to the digital volume while the reset is active, the volume will revert to the newly set value once the reset is released. If the volume is modified within 5/fs of the reset being lifted, the change will occur immediately without undergoing a soft transition.

#### LR Channel Output Signal Select

The SET4038s input and output signal combinations can be configured by using the MONO1-4 and SELLR1-4 bits.

Additionally, the phase of the DAC output signal can be controlled through the INVL1-4 and INVR1-4 bits. These settings are compatible with all audio formats supported by the SET4038.

#### Table 11. Selection of Output for DAC1

| MONO1 Bit | SELLR1 Bit | INVL1 Bit | INVR1 Bit | L1ch Output       | R1ch Output       |
|-----------|------------|-----------|-----------|-------------------|-------------------|
|           |            | 0         | 0         | L1ch Input        | R1ch Input        |
|           |            | 1         | 0         | L1ch Input Invert | R1ch Input        |
| 0         | 0          | 0         | 1         | L1ch Input        | R1ch Input Invert |
|           |            | 1         | 1         | L1ch Input Invert | R1ch Input Invert |
|           |            | 0         | 0         | R1ch Input        | L1ch Input        |
|           |            | 1         | 0         | R1ch Input Invert | L1ch Input        |
| 0         | 1          | 0         | 1         | R1ch Input        | L1ch Input Invert |
|           |            | 1         | 1         | R1ch Input Invert | L1ch Input Invert |
|           |            | 0         | 0         | L1ch Input        | L1ch Input        |
| 1         | 0          | 1         | 0         | L1ch Input Invert | L1ch Input        |
|           |            | 0         | 1         | L1ch Input        | L1ch Input Invert |
|           |            | 1         | 1         | L1ch Input Invert | L1ch Input Invert |
|           |            | 0         | 0         | R1ch Input        | R1ch Input        |
| 1         | 1          | 1         | 0         | R1ch Input Invert | R1ch Input        |
|           |            | 0         | 1         | R1ch Input        | R1ch Input Invert |
|           |            | 1         | 1         | R1ch Input Invert | R1ch Input Invert |

## Table 12. Selection of Output for DAC2

| MONO2 Bit | SELLR2 Bit | INVL2 Bit | INVR2 Bit | L2ch Output       | R2ch Output       |
|-----------|------------|-----------|-----------|-------------------|-------------------|
|           |            | 0         | 0         | L2ch Input        | R2ch Input        |
|           |            | 1         | 0         | L2ch Input Invert | R2ch Input        |
| 0         | 0          | 0         | 1         | L2ch Input        | R2ch Input Invert |
|           |            | 1         | 1         | L2ch Input Invert | R2ch Input Invert |
|           |            | 0         | 0         | R2ch Input        | L2ch Input        |
|           |            | 1         | 0         | R2ch Input Invert | L2ch Input        |
| 0         | 1          | 0         | 1         | R2ch Input        | L2ch Input Invert |
|           |            | 1         | 1         | R2ch Input Invert | L2ch Input Invert |
|           |            | 0         | 0         | L2ch Input        | L2ch Input        |
| 1         | 0          | 1         | 0         | L2ch Input Invert | L2ch Input        |
|           |            | 0         | 1         | L2ch Input        | L2ch Input Invert |
|           |            | 1         | 1         | L2ch Input Invert | L2ch Input Invert |
|           |            | 0         | 0         | R2ch Input        | R2ch Input        |
| 1         | 1          | 1         | 0         | R2ch Input Invert | R2ch Input        |
|           |            | 0         | 1         | R2ch Input        | R2ch Input Invert |
|           |            | 1         | 1         | R2ch Input Invert | R2ch Input Invert |

## Table 13. Selection of Output for DAC3

| MONO3 Bit | SELLR3 Bit | INVL3 Bit | INVR3 Bi | L3ch Output       | R3ch Output       |
|-----------|------------|-----------|----------|-------------------|-------------------|
|           |            | 0         | 0        | L3ch Input        | R3ch Input        |
|           | •          | 1         | 0        | L3ch Input Invert | R3ch Input        |
| 0         | 0          | 0         | 1        | L3ch Input        | R3ch Input Invert |
|           |            | 1         | 1        | L3ch Input Invert | R3ch Input Invert |
|           |            | 0         | 0        | R3ch Input        | L3ch Input        |
|           |            | 1         | 0        | R3ch Input Invert | L3ch Input        |
| 0         | 1          | 0         | 1        | R3ch Input        | L3ch Input Invert |
|           |            | 1         | 1        | R3ch Input Invert | L3ch Input Invert |
|           |            | 0         | 0        | L3ch Input        | L3ch Input        |
| 1         | 0          | 1         | 0        | L3ch Input Invert | L3ch Input        |
|           |            | 0         | 1        | L3ch Input        | L3ch Input Invert |
|           |            | 1         | 1        | L3ch Input Invert | L3ch Input Invert |
|           |            | 0         | 0        | R3ch Input        | R3ch Input        |
| 1         | 1          | 1         | 0        | R3ch Input Invert | R3ch Input        |
|           |            | 0         | 1        | R3ch Input        | R3ch Input Invert |
|           |            | 1         | 1        | R3ch Input Invert | R3ch Input Invert |

Table 14. Selection of Output for DAC4

| MONO4 Bit | SELLR4 Bit | INVL4 Bit | INVR4 Bit | L4ch Output       | R4ch Output       |
|-----------|------------|-----------|-----------|-------------------|-------------------|
|           |            | 0         | 0         | L4ch Input        | R4ch Input        |
|           | 0          | 1         | 0         | L4ch Input Invert | R4ch Input        |
| 0         | 0          | 0         | 1         | L4ch Input        | R4ch Input Invert |
|           |            | 1         | 1         | L4ch Input Invert | R4ch Input Invert |
|           |            | 0         | 0         | R4ch Input        | L4ch Input        |
|           |            | 1         | 0         | R4ch Input Invert | L4ch Input        |
| 0         | 1          | 0         | 1         | R4ch Input        | L4ch Input Invert |
|           |            | 1         | 1         | R4ch Input Invert | L4ch Input Invert |
|           |            | 0         | 0         | L4ch Input        | L4ch Input        |
| 1         | 0          | 1         | 0         | L4ch Input Invert | L4ch Input        |
|           |            | 0         | 1         | L4ch Input        | L4ch Input Invert |
|           |            | 1         | 1         | L4ch Input Invert | L4ch Input Invert |
|           |            | 0         | 0         | R4ch Input        | R4ch Input        |
| 1         | 1          | 1         | 0         | R4ch Input Invert | R4ch Input        |
|           |            | 0         | 1         | R4ch Input        | R4ch Input Invert |
|           |            | 1         | 1         | R4ch Input Invert | R4ch Input Invert |

#### LDO Protection Function

SET4038 integrates an LDO internally, which provides separate clean power supply to key modules inside the chip. This LDO supports over-current protection (OCP) function, which is a current limiting OCP. The typical OCP threshold value is 80mA. When the LDO load current exceeds the OCP threshold, the OCP circuit will forcibly clamp the output current to 80mA. If the load continues to increase at this time, the LDO output current will still remain at around 80mA, but the LDO output voltage (LDOO) will continue to decrease until it reaches 0. The typical LDOO value is 1.85V. Once the chip malfunctions, it is recommended that users first check whether LDOO voltage is normal. If the LDOO voltage is found to be below 1.5V or above 2.2V, it is recommended to restart the chip through the PDN pin. Note that in principle, the LDO only supplies power to the internal circuits of SET4038 and does not supply power to board level devices.

#### Table 15. LDO Fault Detection

| LDO Fault Type              | LDO Fault Conditions           |
|-----------------------------|--------------------------------|
| LDO Over-Current Threshold  | LDO Output Current: 80mA (TYP) |
| LDO Under-Voltage Threshold | LDO Output Voltage: 1.5V (TYP) |
| LDO Over-Voltage Threshold  | LDO Output Voltage: 2.2V (TYP) |

#### Soft Mute Operation

The soft mute function operates exclusively within the digital domain. The SMUTE pin is responsible for controlling the soft mute operation, as depicted in Function for Soft Mute and Detection of Zero Signal. Whenever the SMUTE pin is set to high or the SMUTE bit is configured as 1, the output signal experiences an attenuation of negative infinity during the ATT\_DATA × ATT transition period, commencing from the current ATT level. When the SMUTE pin is brought back to low or the SMUTE bit is reset to 0, and the output attenuation gradually transitions back to the ATT level over the same ATT\_DATA × ATT transition time. When the soft mute is scrapped before the attenuation reaches negative infinity, the attenuation process halts immediately, and the signal returns to the ATT level within the same ATT\_DATA × ATT transition time cycle. The soft mute feature is advantageous when it comes to switching signal sources without interrupting the signal transmission, as it ensures a smooth transition with minimal audio disruption.



NOTES:

1. The transition time for ATT\_DATA × ATT is determined by the specific value of ATT\_DATA. For instance, when ATT\_DATA is set to 255 in the normal speed mode, the transition time spans 4080 LRCK cycles.

2. Each digital input corresponds to an analog output that exhibits a certain group delay (GD).

3. If the soft mute function is deactivated prior to attaining the negative infinity attenuation level after initiating the operation, the attenuation process will be aborted, and the volume will revert to the previous ATT level within the same transition cycle.

4. If the input data for the zero detection channel remains constantly zeros for a duration of 8192 LRCK cycles, the DZF pin transitions to the high state. If the input data ceases to be zero, the DZF pin promptly returns to the low state.

#### Function for Soft Mute and Detection of Zero Signal

#### System Reset

Upon power-up, the SET4038 should be initially reset by setting the PDN pin to low. This reset ensures that the

device starts in a known and consistent state. The PDN pin must be set to high to deactivate the power-down state of the reference voltages, including LDO and VCOM. The settings will take effect within 1ms after the power-down state is lifted. The SET4038 remains in a power-down state until both the MCLK (master clock) and LRCK (left/right

clock) inputs are present and active. This ensures that the device does not commence operation until the necessary clock signals are available and stable, preventing potential issues due to incomplete or unstable initialization.



#### **Power-Down Function**

When the PDN pin of the SET4038 is set to low, the device enters power-down mode, resulting in the analog outputs entering a floating (Hi-Z) state. The specific timings for both power-up and power-down operations are detailed in Figure 9.



#### NOTES:

1. After AVDD and TVDD have been successfully powered up, it is recommended to maintain the PDN pin at low for a duration of 800ns to ensure a stable and reliable transition into the operational state of the device.

2. Once the PDN pin is set to high, the internal LDO and VCOM will activate, initiating the power-up process. Subsequently, the internal registers will undergo initialization. Once the PDN pin is set to high, register writing becomes available within 1ms. This brief delay ensures that the SET4038 has stabilized and is ready to accept configuration and control commands through its registers. During this period, the device performs internal initialization procedures necessary for proper operation.

3. The MCLK, BICK and LRCK clocks can be deactivated in the power-down mode (when the PDN pin is set to low).

4. Each digital input corresponds to an analog output that exhibits a certain group delay (GD).

5. During the power-down mode, the analog outputs enter a floating state (Hi-Z).

6. When the PDN signal experiences an edge transition, click noise may occur. This noise regardless of whether 0 data is input.

7. In the internal power-down mode, the DZF output pin is low.

8. In the case that click noise 5 has an impact on system performance, external analog outputs are recommended to be muted. Figure 9 refers to the timing example.

#### Figure 9. Example of Pin Power-Up and Power-Down Sequence



110dB, 192kHz, 8-Channel Audio DAC

## **DETAILED DESCRIPTION (continued)**

**Power-Off and Reset Functions** 

## Table 16. Power-Off and Reset Functions

|           |            | Analog Output |        |        |        |  |  |
|-----------|------------|---------------|--------|--------|--------|--|--|
| R5 IN BIT | PW4-1 Bits | DAC4          | DAC3   | DAC2   | DAC1   |  |  |
| 0         | 0000       | Hi-Z          | Hi-Z   | Hi-Z   | Hi-Z   |  |  |
| 0         | 0001       | Hi-Z          | Hi-Z   | Hi-Z   | VCOM   |  |  |
| 0         | 0010       | Hi-Z          | Hi-Z   | VCOM   | Hi-Z   |  |  |
| 0         | 0011       | Hi-Z          | Hi-Z   | VCOM   | VCOM   |  |  |
| 0         | 0100       | Hi-Z          | VCOM   | Hi-Z   | Hi-Z   |  |  |
| 0         | 0101       | Hi-Z          | VCOM   | Hi-Z   | VCOM   |  |  |
| 0         | 0110       | Hi-Z          | VCOM   | VCOM   | Hi-Z   |  |  |
| 0         | 0111       | Hi-Z          | VCOM   | VCOM   | VCOM   |  |  |
| 0         | 1000       | VCOM          | Hi-Z   | Hi-Z   | Hi-Z   |  |  |
| 0         | 1001       | VCOM          | Hi-Z   | Hi-Z   | VCOM   |  |  |
| 0         | 1010       | VCOM          | Hi-Z   | VCOM   | Hi-Z   |  |  |
| 0         | 1011       | VCOM          | Hi-Z   | VCOM   | VCOM   |  |  |
| 0         | 1100       | VCOM          | VCOM   | Hi-Z   | Hi-Z   |  |  |
| 0         | 1101       | VCOM          | VCOM   | Hi-Z   | VCOM   |  |  |
| 0         | 1110       | VCOM          | VCOM   | VCOM   | Hi-Z   |  |  |
| 0         | 1111       | VCOM          | VCOM   | VCOM   | VCOM   |  |  |
| 1         | 0000       | Hi-Z          | Hi-Z   | Hi-Z   | Hi-Z   |  |  |
| 1         | 0001       | Hi-Z          | Hi-Z   | Hi-Z   | Normal |  |  |
| 1         | 0010       | Hi-Z          | Hi-Z   | Normal | Hi-Z   |  |  |
| 1         | 0011       | Hi-Z          | Hi-Z   | Normal | Normal |  |  |
| 1         | 0100       | Hi-Z          | Normal | Hi-Z   | Hi-Z   |  |  |
| 1         | 0101       | Hi-Z          | Normal | Hi-Z   | Normal |  |  |
| 1         | 0110       | Hi-Z          | Normal | Normal | Hi-Z   |  |  |
| 1         | 0111       | Hi-Z          | Normal | Normal | Normal |  |  |
| 1         | 1000       | Normal        | Hi-Z   | Hi-Z   | Hi-Z   |  |  |
| 1         | 1001       | Normal        | Hi-Z   | Hi-Z   | Normal |  |  |
| 1         | 1010       | Normal        | Hi-Z   | Normal | Hi-Z   |  |  |
| 1         | 1011       | Normal        | Hi-Z   | Normal | Normal |  |  |
| 1         | 1100       | Normal        | Normal | Hi-Z   | Hi-Z   |  |  |
| 1         | 1101       | Normal        | Normal | Hi-Z   | Normal |  |  |
| 1         | 1110       | Normal        | Normal | Normal | Hi-Z   |  |  |
| 1         | 1111       | Normal        | Normal | Normal | Normal |  |  |



#### **Power-Off Function (PW4-1 Bits)**

All DAC4-1 can be immediately powered down by configuring the PW4-1 bits to 0000. During the internal power-down mode, the transition of analog outputs gets into a floating state (Hi-Z). Additionally, the DACs are reset, and the digital block is powered down by configuring the RSTN bit to 0. In the reset state, when the DAC is energized and the necessary clock signals (MCLK, LRCK and BICK) are provided, the analog outputs the VCOM voltage level (Table 16). It is important to note that setting the PW4-1 bits does not initialize the internal register values, it simply controls the power state of the DACs. Figure 10 exhibits a sample timing diagram depicting the process of powering on and powering down the device.

| PW4-1 Bits       |                   |                |                                         |
|------------------|-------------------|----------------|-----------------------------------------|
| Internal State   | Normal Operation  | Power-Off      | Normal Operation                        |
| MCLK, LRCK, BICK |                   | (1) Don't Care |                                         |
| Digital Inputs   |                   | 0 Data         |                                         |
| Analog Outputs   | ↓<br>↓<br>↓<br>GD | (4) (3)        | (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) |
| DZF Pin          |                   | (5)            |                                         |
| External Mute    | (6)               | Mute On        | 7                                       |

#### NOTES:

1. The MCLK, BICK and LRCK clocks can be deactivated in the power-down mode (PW4-1 bits = 0000).

2. Each digital input corresponds to an analog output that exhibits a certain group delay (GD).

3. During the power-down mode, the analog outputs enter a floating state (Hi-Z).

4. The rising and falling edges ( $\downarrow \uparrow$ ) of the internal clock timing for the PW4-1 bits produce click noise, regardless of whether 0 data is inputted or not.

5. In the internal power-down mode, the DZF pin outputs low (PW4-1 bits = 0000).

6. In the case that click noise 3 has a negative impact on system performance, external analog outputs are recommended to be muted.

#### Figure 10. Example of Pin Power-Up and Power-Down Sequence



#### Reset Function (RSTN Bit)

The DAC can be reset by setting RSTN bit to 0 but this action does not automatically revert the internal registers to their default settings. During this period, the DZF pin will emit high signal whenever clocks (MCLK, BICK and LRCK) are received as inputs. As an illustration, Figure 11depicts a sample reset sequence triggered by the RSTN bit.



#### NOTES:

1. There is a delay of  $3-4/f_s$  from when the RSTN bit transitions to 0 until the internal RSTN bit also reaches 0. Similarly, there is a delay of  $2-3/f_s$  from when the RSTN bit transitions to 0 until the internal RSTN bit reaches 1.

2. Each digital input corresponds to an analog output that exhibits a certain group delay (GD).

3. During the power-down mode, the analog outputs VCOM voltage.

4. The rising and falling edges ( $\downarrow \uparrow$ ) of the internal clock timing for the PW4-1 bits produce click noise, regardless of whether 0 data is inputted or not.

5. When the RSTN bit transitions from high to low, the DZF pin changes its state to high. Subsequently, after the internal RSTN experiences a rising edge, the DZF pin transitions to low after a duration of  $2/f_s$ .

#### Figure 11. Example of Reset Sequence



#### Reset Function (MCLK)

The SET4038 automatically enters a reset state when the MCLK is halted during normal operation, provided that the PDN pin is set to high. Under such conditions, the analog outputs transition to VCOM voltage. When the MCLK (master clock) is re-input, the SET4038 exits the reset state and resumes its operational functions. When MCLK is stopped, zero detect function is disabled.

| AVDD/TVDD      |            |              |              |                      |     |                  |
|----------------|------------|--------------|--------------|----------------------|-----|------------------|
| RSTN Bit       | (1)        |              |              |                      |     |                  |
| Internal State | Power-Down | Normal Opera | ation Digita | al Circuit Power-Dov | vn  | Normal Operation |
| MCLK Input     |            |              |              | MCLK Stop            |     |                  |
| Digital Inputs | Power-Down |              |              | (2)                  |     |                  |
| Analog Outputs | Hi-Z (5)   | GD<br>GD     | (5)          | (4) (                | 5)  |                  |
| External Mute  | (6         | i)           | (6)          |                      | (6) |                  |

#### NOTES:

1. After AVDD and TVDD have been successfully powered up, it is recommended to maintain the PDN pin at low for a duration of 800ns to ensure a stable and reliable transition into the operational state of the device.

2. Data of digital inputs can be stopped. Inputting 0 data during the pause period can effectively mitigate the click noise that would otherwise occur upon the subsequent resumption of the MCLK input.

3. Each digital input corresponds to an analog output that exhibits a certain group delay (GD).

4. When the MCLK signal is paused, the analog outputs VCOM voltage.

5. Click noise emerges within a duration of 3 to 4 LRCK cycles, commencing from the rising edge of the PDN pin or MCLK input. It is worth noting that this noise still exists when the input data is 0.

6. In the case that click noise 3 has a negative impact on system performance, external analog outputs are recommended to be muted. Figure 12 exhibits the sample timing diagram.

#### Figure 12. Example of Reset Sequence 2

#### Parallel Mode

By configuring the I2C pin to high and the PS pin to high, the parallel mode becomes accessible. In this operational mode, the register settings are disregarded. Instead, the audio interface format and soft mute function are directly controlled through designated pins. As for other functionalities, they operate according to the default settings programmed within the registers. The system clock is always set to operate in auto-setting mode in parallel mode.

#### Audio Interface

In parallel mode, the audio interface format is exclusively controlled by the TDM1-0 and DIF pins (Table 17). In parallel mode, both the zero detection function and the functionalities configured through registers are not operational. This means that in parallel mode, the audio interface format is determined solely by physical pins, while other advanced features offered by register settings are unavailable.

#### Table 17. Parallel Mode

|      | Mada |     |         |
|------|------|-----|---------|
| TDM1 | TDM0 | DIF | wode    |
| 0    | 0    | 0   | Mode 6  |
| 0    | 0    | 1   | Mode 7  |
| 0    | 1    | 0   | Mode 12 |
| 0    | 1    | 1   | Mode 13 |
| 1    | 0    | 0   | Mode 18 |
| 1    | 0    | 1   | Mode 19 |
| 1    | 1    | 0   | Mode 24 |
| 1    | 1    | 1   | Mode 25 |

#### **Serial Control Interface**

The functions of SET4038 are managed through registers, which can be programmed by using two types of

control modes. In the 3-wire serial control mode, the internal registers are regulated when the I2C pin is set to low and the PS pin is also set to low. Alternatively, when the I<sup>2</sup>C pin is set to high and the PS pin remains at low, the registers are controlled in the I2C-bus control mode. CAD1-0 pins can determine the chip address.

To initialize the internal registers, simply set the PDN pin to low. When the RSTN bit is set to 0, the internal timing circuit undergoes a reset. However, it is important to note that this action does not initialize the register values. The registers retain their previous settings, and only the timing circuit is affected by this reset operation. When the PDN pin is at low, writing to the registers is not possible.

#### 3-Wire Serial Control Mode (I<sup>2</sup>C Pin = Low)

Utilizing the 3-wire control interface pins of CCLK, CSN and CDTI, the internal registers can be written. The data transmitted over this interface consists of a 2-bit chip address, a fixed 1-bit read/write flag set exclusively for writing, a register address (starting with the MSB, spanning 5 bits), and control data (also starting with the MSB, totaling 8 bits). Data is latched once CSN transitions from low to high. The input of both the address and data occurs on the rising edge of CCLK, while data output happens on the falling edge. The highest clock frequency of CCLK is 5MHz, which determines the upper limit for the rate of data transfer.

To initialize the internal registers, the PDN pin must be set to low. In serial mode, the internal timing circuit can be reset by assigning the RSTN bit a value of 0, but register values are not initialized.



NOTES:

- 2. R/W: read/write (write only)
- 3. A4 to A0: register address
- 4. D7 to D0: control data



#### **I2C Serial Interface and Data Communication**

Standard I2C interface is used to program SET4038 parameters and get status reports. I2C is well-known 2-wire serial communication interface that can connect one (or more) master device(s) to some slave devices for two-way communication. The bus lines are named serial data (SDA) and serial clock (SCL). The device that initiates a data transfer is a master. A master generates the SCL signal. Slave devices have unique addresses to identify. A master is typically a micro controller or a digital signal processor.

The SET4038 operates as a slave device that address is 0x20. It has twenty-one 8-bit registers, numbered from REG0x00 to REG0x14.

## **Physical Layer**

The standard I2C interface of SET4038 supports standard mode and fast mode communication speeds. The frequency of stand mode is up to 100kHz, while the fast mode is up to 400kHz. Bus lines are pulled high by weak current source or pull-up resistors and in logic high state with no clocking when the bus is free. The SDA and SCL pins are open-drain.

## I<sup>2</sup>C Data Communication

#### **START and STOP Conditions**

A transaction is started by taking control of the bus by master if the bus is free. The transaction is terminated by releasing the bus when the data transfer job is done as shown in I<sup>2</sup>C Bus in START and STOP Conditions. All transactions begin by the master who applies a START condition on the bus lines to take over the bus and exchange data. At the end, the master terminates the transaction by applying one (or more) STOP condition. START condition is defined when SCL is high and a high-to-low transition on the SDA is generated by master. Similarly, a STOP is defined when SCL is high and SDA goes from low to high. START and STOP are always generated by a master. After a START and before a STOP the bus is considered busy.



I<sup>2</sup>C Bus in START and STOP Conditions

#### **Data Bit Transmission and Validity**

Data bit (high or low) must remain stable during clock high period. The state of SDA can only change when SCL is low. For each data bit transmission, one clock pulse is generated by the master. Bit transfer in I2C is shown in Figure 14.







#### **Byte Format**

Data is transmitted in 8-bit packets (one byte at a time). The number of bytes in one transaction is not limited. In each packet, the 8 bits are sent successively with the most significant bit (MSB) first. An acknowledge (or not-acknowledge) bit must come after the 8 data bits. This bit informs the transmitter whether the receiver is ready to proceed for the next byte or not. If the slave is busy and cannot transfer another byte of data, it can hold the SCL line low and keep the master in a wait state (called clock stretching). When the slave is ready for another byte of data, it releases the clock line and data transfer can continue with clocks generated by master. Figure 14 shows the byte transfer process with I2C interface.

#### Acknowledge (ACK) and Not Acknowledge (NCK)

After transmission of **each** byte by transmitter, an acknowledge bit is replied by the receiver as ninth bit. With the acknowledge bit, the receiver informs the transmitter that the byte has been received, and another byte is expected or can be sent (ACK) or it is not expected (NCK = not ACK). Clock (SCL) is always generated by the master, including for the acknowledge clock pulse, no matter who is acting as transmitter or receiver. SDA line is released for receiver control during the acknowledge clock pulse, and the receiver can pull the SDA line low as ACK (reply a 0 bit) or let it be high as NCK during the SCL high pulse. After that, the master can either STOP (P) to end the transaction or send a new START (S) condition to start a new transfer (called repeated start). For example, when master wants to read a register in slave, one start is needed to send the slave address and register address, and then, without a STOP condition, another start is sent by master to initiate the receiving transaction from slave. Master then sends the STOP condition and releases the bus.

#### I<sup>2</sup>C-Bus Control Mode (I2C Pin = High)

The SET4038 supports the fast mode I<sup>2</sup>C-bus (maximum: 400kHz).

#### Write Operations

Figure 15 shows the data transfer sequence of the I2C-bus mode. The first byte sent by master after the START is always the target slave address (7 bits) and an eighth data-direction bit (R/W). R/W bit is 0 for a write transaction and 1 for read (when master is asking for data). Data direction is the same for all next bytes of the transaction. To reverse it, a new START or repeated START condition must be sent by master (STOP will end the transaction).

After the START condition, the first byte (Figure 15) consists of the chip slave address of the SET4038. The address consists of 7 bits followed by an eighth bit designated as the data direction bit (R/W). The first five most significant bits of the slave address are permanently set to 00100. The subsequent bits, CAD1-0 serve as device address bits, uniquely identifying a specific device on the bus. These device address bits are configured through dedicated hard-wired input pins (CAD1, CAD0) as shown in Figure 16. When the slave address matches the address of the SET4038, the device generates an acknowledgement, initiating the execution of the corresponding operation. The master to generate the acknowledge-related clock pulse and release the SDA line to a high state during the acknowledge clock pulse, as illustrated in Figure 15. An R/W bit value of 1 signifies the execution of a read operation, while a value of 0 indicates a write operation.

The second byte comprises the control register address to the SET4038. This format follows the rule of MSB first, and the most significant 3 bits are fixed to zeros (Figure 17).

The subsequent data, following the second byte, consists of control data in the format of MSB first, 8 bits (Figure 18). The SET4038 generates an acknowledgement upon receiving each byte. The data transfer process is always

concluded with a STOP condition initiated by the master. This STOP condition is defined by a low-to-high transition on the SDA line while SCL remains high (Figure 14).

The SET4038 is capable of executing multiple byte write operations within a single sequence. Upon receiving the third byte, the SET4038 generates an acknowledgment signal, indicating successful receipt, and subsequently waits for the next data to be transmitted. The master can continue to send additional bytes rather than terminate the write cycle after transmitting the first data byte. As each data packet is received, the internal address counter automatically increments by one, ensuring that the next data is stored in the consecutive address. If the address surpasses 14H before a stop condition is triggered, the address counter resets to 00H, leading to the overwriting of previous data. Therefore, it is essential to manage the data flow and stop condition carefully to avoid data error. It is worth noting that the R4ch ATT register cannot be written to individually. Instead, it must be written through a multi-byte write operation to ensure proper functionality.

During the high state period of the clock, the data on the SDA line must maintain stability. The state of the data line, whether high or low, can only be altered when the clock signal on the SCL line is in its low state, with exceptions being the START and STOP conditions (I2C Bus in START and STOP Conditions).



Figure 18. Byte Data after the Sub Address

## **Read Operations**

To initiate a read operation for the SET4038, the R/W bit should be set to 1. The master can acknowledge receipt and initiate a read operation for the subsequent address after successfully transmitting data, instead of concluding the write cycle upon receiving the first data word. When each data packet is received, the internal address counter automatically increments by one, and the next data automatically enters the next address. If the address exceeds 14H before the stop condition is generated, the address counter will reset to 00H, resulting in the reading of data from address 00H. The SET4038 can allow two fundamental read operations, namely current address read and random address read.

The SET4038 incorporates an internal address counter that keeps track of the address of the last accessed word and automatically increments it by one. Consequently, the subsequent read operation for the current address would retrieve data from address n + 1, assuming the previous access (read or write) was directed to address. Once the SET4038 receives the slave address with the R/W bit set to 1, the SET4038 generates an acknowledgement, transmits a single byte of data from the address designated by the internal address counter, and then increments the internal address counter by1. If the master does not generate an acknowledgement but instead triggers a stop condition, the SET4038 will halt its transmission process.



Figure 19. Data Transfer Sequence at the I<sup>2</sup>C-Bus Mode (Current Address Read)

The random read operation enables the master to randomly access any memory location. Before initializing a slave address and setting the R/W bit to 1, the master must i implement the operation of virtual write. This involves the master sending a start request, followed by the slave address with the R/W bit set to 0, and subsequently the desired register address for reading. Once the register address is acknowledged, the master promptly repeats the start request and transmits the slave address with the R/W bit set to 1. Upon receiving this sequence, the SET4038 responds an acknowledgement by transmitting a single byte of data from the specified address, and incrementing the internal address counter by one. If the master opts not to generate an acknowledgement but instead triggers a stop condition, the SET4038 will halt its transmission, as previously mentioned.



Figure 20. Data Transfer Sequence at the I<sup>2</sup>C-Bus Mode (Random Address Read)



Figure 21. Acknowledge on the I<sup>2</sup>C-Bus



## **REGISTER MAPS**

All registers are 8-bit and individual bits are named from D[0] (LSB) to D[7] (MSB).

Bit Types:

#### R/W: Read/Write

## I<sup>2</sup>C Register Address Map

| Address | Register<br>Name | D[7]  | D[6]  | D[5]  | D[4]  | D[3]   | D[2]   | D[1]   | D[0]  |
|---------|------------------|-------|-------|-------|-------|--------|--------|--------|-------|
| 00H     | Control 1        | 0     | 0     | 0     | 0     | DIF2   | DIF1   | DIF0   | RSTN  |
| 01H     | Control 2        | 0     | 0     | 1     | DFS1  | DFS0   | DEM11  | DEM10  | SMUTE |
| 02H     | Control 3        | 0     | 0     | 0     | 0     | MONO1  | DZFB   | SELLR1 | SLOW  |
| 03H     | L1ch ATT         | ATT7  | ATT6  | ATT5  | ATT4  | ATT3   | ATT2   | ATT1   | ATT0  |
| 04H     | R1ch ATT         | ATT7  | ATT6  | ATT5  | ATT4  | ATT3   | ATT2   | ATT1   | ATT0  |
| 05H     | Control 4        | INVL1 | INVR1 | INVL2 | INVR2 | SELLR2 | 0      | DFS2   | SSLOW |
| 06H     | Reserved         | _     | _     | _     | -     | _      | _      | _      | _     |
| 07H     | Control 5        | R2    | R4    | L3    | L1    | 0      | 0      | 0      | 1     |
| 08H     | Control 6        | R1    | R3    | L2    | L4    | 0      | 0      | 0      | 0     |
| 09H     | Reserved         | _     | _     | -     | -     | -      | _      | -      | -     |
| 0AH     | Control 7        | TDM1  | TDM0  | SDS1  | SDS2  | PW2    | PW1    | DEM21  | DEM20 |
| 0BH     | Control 8        | ATS1  | ATS0  | 0     | SDS0  | PW4    | PW3    | 0      | 0     |
| 0CH     | Control 9        | INVR4 | INVL4 | INVR3 | INVL3 | 0      | 0      | 0      | 0     |
| 0DH     | Control 10       | MONO  | MONO3 | MONO2 | 0     | SELLR4 | SELLR3 | 0      | 0     |
| 0EH     | Control 11       | DEM41 | DEM40 | DEM31 | DEM30 | 0      | 0      | 0      | 0     |
| 0FH     | L2ch ATT         | ATT7  | ATT6  | ATT5  | ATT4  | ATT3   | ATT2   | ATT1   | ATT0  |
| 10H     | R2ch ATT         | ATT7  | ATT6  | ATT5  | ATT4  | ATT3   | ATT2   | ATT1   | ATT0  |
| 11H     | L3ch ATT         | ATT7  | ATT6  | ATT5  | ATT4  | ATT3   | ATT2   | ATT1   | ATT0  |
| 12H     | R3ch ATT         | ATT7  | ATT6  | ATT5  | ATT4  | ATT3   | ATT2   | ATT1   | ATT0  |
| 13H     | L4ch ATT         | ATT7  | ATT6  | ATT5  | ATT4  | ATT3   | ATT2   | ATT1   | ATT0  |
| 14H     | R4ch ATT         | ATT7  | ATT6  | ATT5  | ATT4  | ATT3   | ATT2   | ATT1   | ATT0  |

NOTES:

1. Addresses ranging from 15H to 1FH are not writable.

2. When designated as 0, the bit must be assigned a value of zero.

3. Upon setting the PDN pin to low, the registers undergo initialization and adopt their default values.

4. Upon setting the RSTN bit to 0, the internal timing is reset, whereas the registers maintain their current state without undergoing initialization.

# REGISTER MAPS (continued) REG0x00: Control 1 Register [Reset = 0x0D]

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                                                                                                    |  |
|--------|----------|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| D[7:4] | Reserved | 0000    | R/W  | Reserved                                                                                                                                       |  |
| D[3]   | DIF2     | 1       | R/W  |                                                                                                                                                |  |
| D[2]   | DIF1     | 1       | R/W  | Audio Data Interface Modes (Table 4)                                                                                                           |  |
| D[1]   | DIF0     | 0       | R/W  |                                                                                                                                                |  |
| D[0]   | RSTN     | 1       | R/W  | Internal Timing Reset<br>0 = Reset (when the DZF pin is set to high, the register values are uninitialized.)<br>1 = Normal operation (default) |  |

## REG0x01: Control 2 Register [Reset = 0x22]

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                                                                                      |
|--------|----------|---------|------|----------------------------------------------------------------------------------------------------------------------------------|
| D[7:5] | Reserved | 001     | R/W  | Reserved                                                                                                                         |
| D[4]   | DFS1     | 0       | R/W  | Sampling Speed Mode Control (Table 1) DFS2-0                                                                                     |
| D[3]   | DFS0     | 0       | R/W  | 001 = Double speed mode 010 = Quad speed mode Others = N/A<br>When adjusting the DFS2-0 bit setting, a click noise is generated. |
| D[2]   | DEM11    | 0       | R/W  | De-emphasis Response for DAC1 (Table 3) DEM11-10                                                                                 |
| D[1]   | DEM10    | 1       | R/W  | 01 = OFF (default) $10 = 48$ kHz<br>11 = 32kHz                                                                                   |
| D[0]   | SMUTE    | 0       | R/W  | Soft Mute Enable<br>0 = Normal operation (default) 1 = Soft-muted of DAC outputs                                                 |

## REG0x02: Control 3 Register [Reset = 0x00]

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|----------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7:4] | Reserved | 0000    | R/W  | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| D[3]   | MONO1    | 0       | R/W  | Upon setting the MONO1 bit to 1,the DAC1 transitions to MONO output mode.(Table 11)<br>0 = Stereo mode (default)<br>1 = MONO mode                                                                                                                                                                                                                                                                                                                                                                                                                |
| D[2]   | DZFB     | 0       | R/W  | Inverting Enable of DZF (Table 8)<br>0 = DZF pin set to high at zero detection (default)<br>1 = DZF pin set to low at zero detection                                                                                                                                                                                                                                                                                                                                                                                                             |
| D[1]   | SELLR1   | 0       | R/W  | Data Selection of DAC1 (Table 11)<br>0 = Normal mode (default)<br>1 = Swap mode<br>This bit enables or disables the channel swapping feature. When set to 0, the audio system<br>operates in normal mode, where the left channel input is routed to the left channel output, and<br>the right channel input is routed to the right channel output. When set to 1, the audio system<br>enters swap mode, where the left channel input is routed to the right channel output, and the<br>right channel input is routed to the left channel output. |
| D[0]   | SLOW     | 0       | R/W  | Slow Roll-Off Filter Enable (Table 7) 0 = Disable (default)<br>1 = Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



# REGISTER MAPS (continued) REG0x03: L1chATT Register [Reset = 0xFF]

| BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                             |
|------|----------|---------|------|-------------------------------------------------------------------------|
| D[7] | ATT7     | 1       | R/W  |                                                                         |
| D[6] | ATT6     | 1       | R/W  |                                                                         |
| D[5] | ATT5     | 1       | R/W  | Attenuction Level (Table 0) 1111 1111 – OdP (default) 1111 1110 – 0 5dP |
| D[4] | ATT4     | 1       | R/W  |                                                                         |
| D[3] | ATT3     | 1       | R/W  | 0000 0001 = -127dB                                                      |
| D[2] | ATT2     | 1       | R/W  | $0000\ 0000 = Mute(-\infty)$                                            |
| D[1] | ATT1     | 1       | R/W  |                                                                         |
| D[0] | ATT0     | 1       | R/W  |                                                                         |

## REG0x04: R1chATT Register [Reset = 0xFF]

| BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                              |
|------|----------|---------|------|--------------------------------------------------------------------------|
| D[7] | ATT7     | 1       | R/W  |                                                                          |
| D[6] | ATT6     | 1       | R/W  |                                                                          |
| D[5] | ATT5     | 1       | R/W  |                                                                          |
| D[4] | ATT4     | 1       | R/W  | Attenuation Level (Table 9) 1111 1111 = 0dB (default) 1111 1110 = -0.5dB |
| D[3] | ATT3     | 1       | R/W  | 0000 0001 = -127dB                                                       |
| D[2] | ATT2     | 1       | R/W  | 0000 0000 = Mute (-∞)                                                    |
| D[1] | ATT1     | 1       | R/W  |                                                                          |
| D[0] | ATT0     | 1       | R/W  |                                                                          |

## REG0x05: Control 4 Register [Reset = 0x00]

| BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------|----------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D[7] | INVL1    | 0       | R/W  | Output of AOUTL1 Phase Inverting Enable Bit (Table 11)<br>0 = Normal (default)<br>1 = Inverted                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D[6] | INVR1    | 0       | R/W  | Output of AOUTR1 Phase Inverting Enable Bit (Table 11)<br>0 = Normal (default)<br>1 = Inverted                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D[5] | INVL2    | 0       | R/W  | Output of AOUTL2 Phase Inverting Enable Bit (Table 12)<br>0 = Normal (default)<br>1 = Inverted                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D[4] | INVR2    | 0       | R/W  | Output of AOUTR2 Phase Inverting Enable Bit (Table 12)<br>0 = Normal (default)<br>1 = Inverted                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D[3] | SELLR2   | 0       | R/W  | Data Selection of DAC2 (Table 12)<br>0 = Normal mode (default)<br>1 = Swap mode<br>This bit enables or disables the channel swapping feature. When set to 0, the audio system<br>operates in normal mode, where the left channel input is routed to the left channel output, and<br>the right channel input is routed to the right channel output. When set to 1, the audio system<br>enters swap mode, where the left channel input is routed to the right channel output, and the<br>right channel input is routed to the left channel output. |
| D[2] | Reserved | 0       | R/W  | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| D[1] | DFS2     | 0       | R/W  | Sampling Speed Mode Control (Table 1)<br>DFS2-0<br>000 = Normal speed mode (default)<br>001 = Double speed mode 010 = Quad speed mode Others = N/A<br>When adjusting the DFS2-0 bit setting, a click noise is generated.                                                                                                                                                                                                                                                                                                                         |
| D[0] | SSLOW    | 0       | R/W  | Super Slow Roll-Off Mode Enable (Table 7)<br>0 = Disable (default)<br>1 = Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# REGISTER MAPS (continued) REG0x07: Control 5 Register [Reset = 0x01]

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                       |
|--------|----------|---------|------|-------------------------------------------------------------------|
| D[7]   | R2       | 0       | R/W  |                                                                   |
| D[6]   | R4       | 0       | R/W  | Zero Detect Flag Enable Bit for the DZF Pin 0 = Disable (default) |
| D[5]   | L3       | 0       | R/W  | 1 = Enable                                                        |
| D[4]   | L1       | 0       | R/W  |                                                                   |
| D[3:0] | Reserved | 0001    | R/W  | Reserved                                                          |

## REG0x08: Control 6 Register [Reset = 0x00]

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                 |
|--------|----------|---------|------|---------------------------------------------|
| D[7]   | R1       | 0       | R/W  |                                             |
| D[6]   | R3       | 0       | R/W  | Zero Detect Flag Enable Bit for the DZF Pin |
| D[5]   | L2       | 0       | R/W  | 0 = Disable (default)<br>1 = Enable         |
| D[4]   | L4       | 0       | R/W  |                                             |
| D[3:0] | Reserved | 0000    | R/W  | Reserved                                    |

## REG0x0A: Control 7 Register [Reset = 0x0D]

| BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                                                |  |
|------|----------|---------|------|--------------------------------------------------------------------------------------------|--|
| D[7] | TDM1     | 0       | R/W  | TDM Mode Select TDM1-0                                                                     |  |
| D[6] | TDM0     | 0       | R/W  | 00 = Normal mode (default)<br>01 = TDM128 mode 10 = TDM256 mode 11 = TDM512 mode           |  |
| D[5] | SDS1     | 0       | R/W  | Data Selection for DAC1-4                                                                  |  |
| D[4] | SDS2     | 0       | R/W  | 1 = Normal operation (default)<br>1 = Output other slot data (Table 5) SDS2-0 default: 000 |  |
| D[3] | PW2      | 1       | R/W  | Power-Down Control for DAC2<br>0 = DAC2 power-off<br>1 = DAC2 power-on (default)           |  |
| D[2] | PW1      | 1       | R/W  | Power-Down Control for DAC1<br>0 = DAC1 power-off<br>1 = DAC1 power-on (default)           |  |
| D[1] | DEM21    | 0       | R/W  | De-emphasis Response for DAC2 DEM21-20<br>00 = 44.1kHz                                     |  |
| D[0] | DEM20    | 1       | R/W  | 01 = OFF (default) 10 = 48kHz<br>11 = 32kHz                                                |  |

# REGISTER MAPS (continued) REG0x0B: Control 8 Register [Reset = 0x0C]

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                                                                                        |  |
|--------|----------|---------|------|------------------------------------------------------------------------------------------------------------------------------------|--|
| D[7]   | ATS1     | 0       | R/W  | Transition Time between Value Settings of ATT7-0 Bits (Table 10)                                                                   |  |
| D[6]   | ATS0     | 0       | R/W  | $\begin{array}{l} 00 = 4080/f_{\rm S} & (\text{default}) \\ 01 = 2040/f_{\rm S} & 10 = 510/f{\rm S}11 = 255/f_{\rm S} \end{array}$ |  |
| D[5]   | Reserved | 0       | R/W  | Reserved                                                                                                                           |  |
| D[4]   | SDS0     | 0       | R/W  | Data Selection for DAC1-4<br>0 = Normal operation (default)<br>1 = Output other slot data (Table 5) SDS2-0 default: 000            |  |
| D[3]   | PW4      | 1       | R/W  | Power-Down Control for DAC4<br>0 = DAC4 power-off<br>1 = DAC4 power-on (default)                                                   |  |
| D[2]   | PW3      | 1       | R/W  | Power-Down Control for DAC3<br>0 = DAC3 power-off<br>1 = DAC3 power-on (default)                                                   |  |
| D[1:0] | Reserved | 00      | R/W  | Reserved                                                                                                                           |  |

# REG0x0C: Control 9 Register [Reset = 0x00]

| BITS   | BIT NAME | DEFAULT | TYPE                                                                                                                     | DESCRIPTION                                                                                    |
|--------|----------|---------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| D[7]   | INVR4    | 0       | R/W                                                                                                                      | Output of AOUTR4 Phase Inverting Enable Bit (Table 14)<br>0 = Normal (default)<br>1 = Inverted |
| D[6]   | INVL4    | 0       | R/W                                                                                                                      | Output of AOUTL4 Phase Inverting Enable Bit (Table 14)<br>0 = Normal (default)<br>1 = Inverted |
| D[5]   | INVR3    | 0       | R/W                                                                                                                      | Output of AOUTR3 Phase Inverting Enable Bit (Table 13)<br>0 = Normal (default)<br>1 = Inverted |
| D[4]   | INVL3    | 0       | Output of AOUTL3 Phase Inverting Enable Bit (Table 13)           R/W         0 = Normal (default)           1 = Inverted |                                                                                                |
| D[3:0] | Reserved | 0000    | R/W                                                                                                                      | Reserved                                                                                       |

# REGISTER MAPS (continued) REG0x0D: Control 10 Register [Reset = 0x00]

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|--------|----------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| D[7]   | MONO4    | 0       | R/W  | Upon setting the MONO4 bit to 1,the DAC4 transitions to MONO output mode. (Table 14)<br>0 = Stereo mode (default)<br>1 = MONO mode                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| D[6]   | MONO3    | 0       | R/W  | Upon setting the MONO3 bit to 1,the DAC3 transitions to MONO output mode. (Table 13)<br>0 = Stereo mode (default)<br>1 = MONO mode                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| D[5]   | MONO2    | 0       | R/W  | Upon setting the MONO2 bit to 1,the DAC2 transitions to MONO output mode. (Table 12)<br>0 = Stereo mode (default)<br>1 = MONO mode                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| D[4]   | Reserved | 0       | R/W  | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| D[3]   | SELLR4   | 0       | R/W  | Data Selection of DAC4 (Table 14)<br>0 = Normal mode (default)<br>1 = Swap mode<br>This bit enables or disables the channel swapping feature. When set to 0, the audio syste<br>operates in normal mode, where the left channel input is routed to the left channel output,<br>and the right channel input is routed to the right channel output. When set to 1, the audio<br>system enters swap mode, where the left channel input is routed to the right channel output,<br>and the right channel input is routed to the left channel output. |  |  |
| D[2]   | SELLR3   | 0       | R/W  | Data Selection of DAC3 (Table 13)<br>0 = Normal mode (default)<br>1 = Swap mode<br>This bit enables or disables the channel swapping feature. When set to 0, the audio system<br>operates in normal mode, where the left channel input is routed to the left channel output, an<br>the right channel input is routed to the right channel output. When set to 1, the audio system<br>enters swap mode, where the left channel input is routed to the right channel output, and the<br>right channel input is routed to the left channel output. |  |  |
| D[1:0] | Reserved | 00      | R/W  | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |

## REG0x0E: Control 11 Register [Reset = 0x50]

| BITS   | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                 |
|--------|----------|---------|------|-------------------------------------------------------------|
| D[7]   | DEM41    | 0       | R/W  | De-emphasis Response for DAC4 (Table 3) DEM41-40            |
| D[6]   | DEM40    | 1       | R/W  | 00 = 44.1kHz<br>01 = OFF (default) 10 = 48kHz<br>11 = 32kHz |
| D[5]   | DEM31    | 0       | R/W  | De-emphasis Response for DAC3 (Table 3) DEM31-30            |
| D[4]   | DEM30    | 1       | R/W  | 00 = 44.1kHz<br>01 = OFF (default) 10 = 48kHz<br>11 = 32kHz |
| D[3:0] | Reserved | 0000    | R/W  | Reserved                                                    |
| D[1:0] | Reserved | 00      | R/W  | Reserved                                                    |

## REG0x0F/0x11/0x13: L2ch/L3ch/L4chATT Register [Reset = 0xFF]

| BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                              |
|------|----------|---------|------|--------------------------------------------------------------------------|
| D[7] | ATT7     | 1       | R/W  |                                                                          |
| D[6] | ATT6     | 1       | R/W  |                                                                          |
| D[5] | ATT5     | 1       | R/W  |                                                                          |
| D[4] | ATT4     | 1       | R/W  | Attenuation Level (Table 9) 1111 1111 = 0dB (default) 1111 1110 = -0.5dB |
| D[3] | ATT3     | 1       | R/W  |                                                                          |
| D[2] | ATT2     | 1       | R/W  | $0000\ 0001 = -127 dB$                                                   |
| D[1] | ATT1     | 1       | R/W  | 0000 0000 - Midle (-∞)                                                   |
| D[0] | ATT0     | 1       | R/W  |                                                                          |

# REGISTER MAPS (continued) REG0x10/0x12/0x14: R2ch/R3ch/ R4chATT Register [Reset = 0xFF]

| BITS | BIT NAME | DEFAULT | TYPE | DESCRIPTION                                                              |  |
|------|----------|---------|------|--------------------------------------------------------------------------|--|
| D[7] | ATT7     | 1       | R/W  |                                                                          |  |
| D[6] | ATT6     | 1       | R/W  |                                                                          |  |
| D[5] | ATT5     | 1       | R/W  |                                                                          |  |
| D[4] | ATT4     | 1       | R/W  | Attenuation Level (Table 9) 1111 1111 = 0dB (default) 1111 1110 = -0.5dB |  |
| D[3] | ATT3     | 1       | R/W  | 0000 0001 = -127dB                                                       |  |
| D[2] | ATT2     | 1       | R/W  | 0000 0000 = Mute (-∞)                                                    |  |
| D[1] | ATT1     | 1       | R/W  |                                                                          |  |
| D[0] | ATT0     | 1       | R/W  |                                                                          |  |



## APPLICATION INFORMATION

The SET4038 needs to input the MCLK signal in advance to execute the 3-wire serial/I2C-bus program. It can only enter its normal operating state once the power-up sequences for AVDD, TVDD and VREFH are completed, and the functional and digital logic blocks are enabled. It is crucial that the voltage at the digital input pins is synchronized with the voltage of TVDD to prevent reverse current flow, commonly known as back flow.

## Grounding and Power Supply Decoupling

The SET4038 necessitates meticulous attention to its power supply and grounding configurations. AVDD and TVDD are usually sourced from the analog power supply. In cases where AVDD and TVDD are supplied independently, the specific power-up sequence between them is not crucial. For VSS1 and VSS2, they ought to be interconnected to a unified analog ground plane. It is essential to separate the analog ground from its digital ground and connect them as closely as possible to the point where the power supplies are introduced onto the printed circuit board. Positioning decoupling capacitors as close as possible to the SET4038 is imperative.

## **Voltage Reference**

The analog output range is determined by the differential voltage between the VREFH and VREFL pins, with the VREFH pin typically connected to AVDD and the VREFL pin linked to VSS2. To mitigate the impact of high-frequency noise, it is recommended to connect VREFH and VREFL with a  $0.1\mu$ F ceramic capacitor and a  $10\mu$ F electrolytic capacitor, positioning them as close as possible to the respective pins.

VCOM is defined as the signal ground of the chip, and can output a voltage of AVDD  $\times$  1/2. To

mitigate the impact of high-frequency noise, a  $2.2\mu$ F ± 50% ceramic capacitor should be placed between the VCOM pin and VSS2, and it is crucial to position this capacitor as close to the pin as possible. It is important to note that no load current should be drawn from the VCOM pin. Additionally, it is essential to keep all signals, particularly clocks, away from the VREFH pin and the VCOM pin to prevent unwanted coupling into the SET4038.

The LDOO produces 1.2V, which serves as the voltage source for the internal digital circuit. To ensure the stability of the internal LDO, it is necessary to connect a  $2.2\mu$ F $\pm$ 50% ceramic capacitor between the LDOO pin and VSS1, positioning it as close to the pin as possible. It is crucial to note that no load current should be drawn from the VCOM pin.

## **Analog Output**

Nominally, the output signal range is centered on the VCOM voltage and spans  $0.86 \times VREFH Vpp$ . The DAC employs a 2's complement data format, with a positive full-scale output corresponding to 7FFFFFFH (for 32-bit) and a negative full-scale output corresponding to 80000000H (for 32-bit). The ideal output is VCOM voltage for 00000000H (for 32-bit).

To minimize noise generated by the delta-sigma modulator of the DAC beyond the audio pass-band in single-ended input mode, internal analog filters are employed. However, it's worth noting that the DAC outputs typically have DC offsets of a few millivolts relative to the VCOM voltage. Consequently, an external capacitor is normally used to eliminate this DC component. Unused input or output pins must be connected correctly. AOUTL1-4, AOUTR1-4 and DZF pins must be set to open and SDTI1-4 pins must be connected to VSS1.



# APPLICATION INFORMATION (continued) External Circuits of Analog Output

The analog output of this circuit typically reaches 2.8Vpp (as specified for the SET4038 model). Typically, due to the presence of DC offsets in the DAC outputs, which amount to a few millivolts relative to the VCOM voltage, an external capacitor is employed to eliminate the DC component. The cutoff frequency of the high-pass filter (HPF) is detailed in the following section.

 $f_{\rm C} = 1/(2 \times \pi \times R \times C) (Hz)$ (1)

The external AC coupling capacitor is denoted by C, while R represents the load resistance. Given that C equals  $2.2\mu$ F and R equals  $5k\Omega$ , the resulting cutoff frequency f<sub>c</sub> is calculated to be 14.5Hz. Note that in AC coupling mode, the maximum resistive load capacity is  $5k\Omega$ .

Another output mode is DC coupling, as shown on the right side of Example of Output Buffer Circuits. The output is directly connected to the load without AC coupling capacitor. In this mode, there is a common mode voltage at the output terminal, which is AVDD/2 (typical value is 1.65V), and the maximum resistive load capacity is  $10k\Omega$ .



Example of Output Buffer Circuits

## **OVERSTRESS CAUTION**

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

## **ESD SENSITIVITY CAUTION**

This integrated circuit can be damaged if ESD protections are not considered carefully. SET recommends that all

integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

## DISCLAIMER

SET reserves the right to make any change in circuit design, or specifications without prior notice.

# PACKAGE TQFN-5×5-32FL



| Symbol | Dimensions In Millimeters |     |       |  |  |  |  |
|--------|---------------------------|-----|-------|--|--|--|--|
|        | MIN                       | MOD | ΜΑΧ   |  |  |  |  |
| А      | 0.700                     | _   | 0.800 |  |  |  |  |
| A1     | 0.000                     | -   | 0.050 |  |  |  |  |
| A2     | 0.203 REF                 |     |       |  |  |  |  |
| b      | 0.180                     | -   | 0.300 |  |  |  |  |
| D      | 4.900                     | -   | 5.100 |  |  |  |  |
| E      | 4.900                     | -   | 5.100 |  |  |  |  |
| D1     | 3.050                     | -   | 3.250 |  |  |  |  |
| E1     | 3.050                     | -   | 3.250 |  |  |  |  |
| е      | 0.500 BSC                 |     |       |  |  |  |  |
| L      | 0.300                     | -   | 0.500 |  |  |  |  |
| eee    | 0.080                     |     |       |  |  |  |  |

NOTES: This drawing is subject to change without notice.



## Disclaimer

The content specified herein is for the purpose of introducing SET's products (hereinafter "Products"). The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

SET does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of the Products or technical information described in this document.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). SET shall bear no responsibility in any way for use of any of the Products for the above special purposes.

Although SET endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a SET product.

The content specified herein is subject to change for improvement without notice. When using a SET product, be sure to obtain the latest specifications.