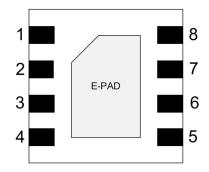


General Description

SSF104 is a small 8pin DFN packaged customized ASIC with configurable parameters. It supports frequency division and in-phase output function.

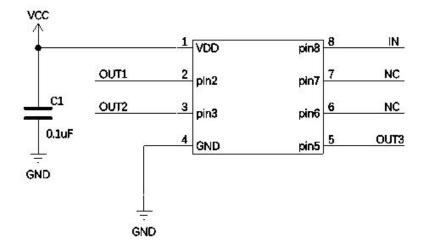

Features

- Power supply input: 2.3V~5.5V
- OUT1, 1x Push Pull Digital Output, 12.288Mhz output
- OUT2, 1x Push Pull Digital Output, 6.144Mhz output
- GND Power Ground
- OUT3, 1x Push Pull Digital Output 96Khz output
- NC Not Connected, Internal pull-down 1M
- IN Digital input with Schmitt, Internal pull-down 1M, 12.288Mhz input
- DFN 8 Package

Applications

- Ultra low power consumption
- Pb Free and RoHS Compliant and Halogen Free

Pin Configurations



2.0mm x 2.0mm 8 Pin DFN Top View

datasheet Rev. 1.1

Block Diagram

Note:

- 1. Voltage on any pin must be with in GND to VDD.
- 2. ESD protect is must be considered on all Pins which connected to external interface.

Pin name

Pin	Pin	ТҮРЕ	Function
1	VDD	Power	Power supply input, 2.3V~5.5V
2	OUT1	1x Push Pull Digital Output	12.288Mhz output.
3	OUT2	1x Push Pull Digital Output	6.144Mhz output.
4	GND	Power	Ground
5	OUT3	1x Push Pull Digital Output	96Khz output.
6	NC	Not Connected	Internal pull-down 1M
7	NC	Not Connected	Internal pull-down 1M
8	IN	Digital input with Schmitt	Internal pull-down 1M, 12.288Mhz input.

datasheet Rev. 1.1 2 / 7

Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
Supply Voltage on VDD to GND	-0.3	7	V
Maximum Voltage Input to Pins	-0.3	7	V
VDD to GND Maximum DC Current		90	mA
Input Leakage Current		1000	nA
Storage Temperature Range	-65	150	°C
Junction Temperature		150	°C
ESD Protection (HBM)	2000		V
ESD Protection (CDM)	500		V
Moisture Sensitivity Level (MSL)		1	

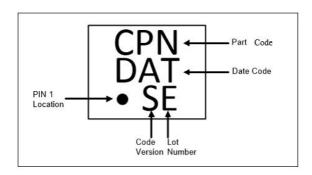
Customize Electrical Characteristics

VDD = $3.3V\pm10\%$, Temp= 25° C

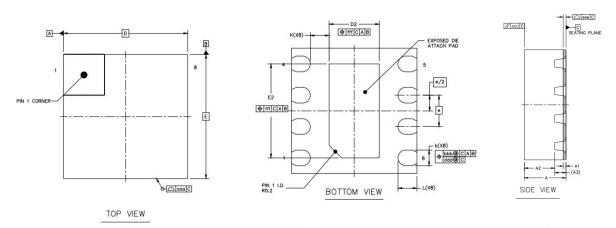
Symbol	Parameter	Condition/Note	Min.	Тур.	Max.	Unit
l α	Quiescent Current	Static inputs and floating outputs		0.1		μΑ

datasheet Rev. 1.1 3 / 7

Electrical Characteristics

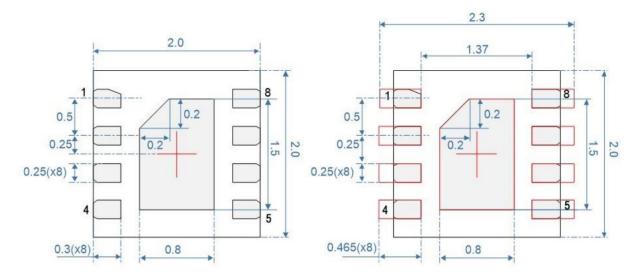

VDD =3.3V±10%, Temp: -40~85°C

Symbol	Parameter	Condition/Note	Min.	Тур.	Max.	Uni
V _{DD}	Supply Voltage		1.71	3.3	5.5	V
T _A	Operating Temperature		-40	25	85	°C
C _{VDD}	Capacitor Value at VDD			0.1		μF
I _{IH}	HIGH-Level Input Current	Logic Input PINs; V _{IN} = VDD	-1.0		1.0	μΑ
I _{IL}	LOW-Level Input Current	Logic Input PINs; V _{IN} = 0V	-1.0		1.0	μΔ
POR						
PON_{THR}	Power On Threshold	VDD Level Required to Start Up	1.67	1.80	1.92	V
POFF _{THR}	Power Off Threshold	VDD Level Required to Switch Off	0.95	1.25	1.54	V
T_{SU}	Startup Time	From VDD rising past PON _{THR}		1.2	1.6	m:
I _{stand_by}		T=+25℃		97		n/
O PIN						
	HIGH-Level Input Voltage	Logic Input	1.90			٧
V_{IH}		Logic Input with Schmitt Trigger	2.11			٧
		Low-Level Logic Input	0.92			V
		Logic Input		97	٧	
V_{IL}	LOW-Level Input Voltage	Logic Input with Schmitt Trigger			1.16	V
		Low-Level Logic Input		-1.0 1.0 -1.0 1.0 1.67 1.80 1.92 0.95 1.25 1.54 1.2 1.6 97 1.90 2.11 0.92 1.30 1.16 0.45 1.000 2.60 2.80 0.25 0.22 0.089 5 10 5 5 0.089 5 0.089	0.77	V
V_{HYS}	SchmittTrigger Hysteresis Voltage	Logic Input with Schmitt Trigger		0.45		V
I _{LKG}	Input leakage (Absolute Value)			1	1000	n <i>A</i>
M	HIGH-Level Outpu Voltage	Push-Pull, I _{OH} = 3 mA, 1X Drive	2.60	3.3 25 0.1 1.80 1.25 1.2 97		٧
V _{OH}		Push-Pull, I _{OH} = 3 mA, 2X Drive	2.80			٧
		Push-Pull, I _{OL} = 3 mA, 1X Drive			3 5.5 5 85 1 1.0 - 1.0 - 1.0 - 1.0 - 1.54 2 1.6 7 1.30 - 1.16 - 0.77 45 0.25 - 0.22 - 0.12 - 0.089	V
	LOW-Level Output Voltage	Push-Pull, I _{OL} = 3 mA, 2X Drive			0.22	V
V _{OL}		Open Drain, I _{OL} = 3 mA, 1X Drive			0.12	V
		Open Drain, I _{OL} = 3 mA, 2X Drive			0.089	٧
	HIGH-Level Output Pulse Current (see Note)	Push-Pull, V _{OH} = 2.4 V , 1X Drive	5			m
I _{OH}		Push-Pull, V _{OH} = 2.4 V, 2X Drive	10			m
	LOW-Level Output Pulse Current (see Note)	Push-Pull, V _{OL} = 0.4 V, 1X Drive	5			m
I _{OL}		Push-Pull, V _{OL} = 0.4 V, 2X Drive	10			m
		Open Drain, V _{OL} = 0.4 V, 1X Drive	15			m
		Open Drain, V _{OL} = 0.4 V, 2X Drive	30			m


datasheet Rev. 1.1 4 / 7

Package Top Marking

Package Drawing and Dimensions


		SYMBOL	MIN	NOM	MAX	
TOTAL THICKNESS	Computer Company Compa		0.7	0.75	0.8	
STAND OFF		A1	0	0.02	0.05	
MOLD THICKNESS		A2		0.55		
L/F THICKNESS		A3	0.203 REF			
LEAD WIDTH		ь	0.2 0.25 0.3			
BODY SIZE	X	D	2 BSC			
BODT SIZE	Y	E	2 BSC			
LEAD PITCH	:50)	e	0.5 BSC			
ED SIZE	Х	D2	0.7	0.8	0.9	
EP SIZE Y E2 1.4 1.	1.5	1.6				
LEAD LENGTH		L	0.2	0.3	1.6 0.4	
LEAD TIP TO EXPOSED P	EAD TIP TO EXPOSED PAD EDGE		0.3 REF			
PACKAGE EDGE TOLERAN	CE	aaa		0.5 REF 0.1		
MOLD FLATNESS		ccc		0.1		
COPLANARITY	eee	0.05				
LEAD OFFSET		bbb	0.1			
LEAD OFFSET		ddd	0.05			
EXPOSED PAD OFFSET		fff	0.1			
		+				

datasheet Rev. 1.1 5 / 7

Recommended Land Patter

Unit: mm

datasheet Rev. 1.1 6 / 7

Disclaimer

The content specified herein is for the purpose of introducing SET's products (hereinafter "Products"). The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

SET does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of the Products or technical information described in this document.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). SET shall bear no responsibility in any way for use of any of the Products for the above special purposes.

Although SET endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a SET product.

The content specified herein is subject to change for improvement without notice. When using a SET product, be sure to obtain the latest specifications.

datasheet Rev. 1.1 7 / 7