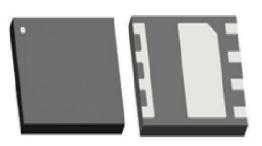
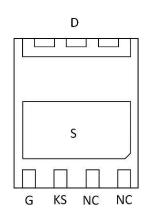


Description


SGI65N200DFDF is an integrated device that includes a single channel high speed driver and an enhanced GaN transistor which is a wide band gap semiconductor with high power density. The gallium nitride transistor is characterized by no body diode, so the reverse recovery charge is zero.

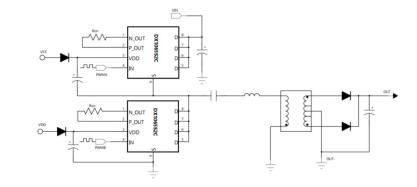

Features

- 650 V enhancement mode power switch
- RDS(on) =200mΩ
- IDS(max) = 10A
- Easy gate drive requirements (0 V to 6 V)
- Very high switching frequency (> 10 MHz)
- Fast and controllable fall and rise times
- Zero reverse recovery loss

Device Information

Part Number	Marking Code	Package	Packing	
SGI65N200DFDF	SGI65N200DF	DFN5×6	4000pcs/reel	

SGI65N200DFDF DFN5x6


SGI65N200DFDF Bottom View

Integrated GaN Chip

Applications

- Fast Battery Charging
- LED lighting drivers
- Power Factor CorrectionL
- LLC Converters
- Wireless Power Transfer

Typical application circuit for LLC

Absolute Maximum Ratings (Tc=25 $^{\circ}$ C unless otherwise specified)

Parameter	Symbol	Value	Unit	Condition
Drain-Source voltage	Vds	650	V	
Gate-source voltage	V _G s	-10 to 6	V	
Continuous drain current*		10	А	Tc=25 ℃
	lo	4.5	А	Tc=125 ℃
Operation and storage	Tj	-55 to 150	°C	
temperature	Tstg	-55 to 150	°C	

* An Estimated Value

Electrical Characteristics (Tc=25 °C unless otherwise specified) Typical

Performance – Static

Parameter	Symbol	Values		Unit	Test condition	
		Min.	Туре.	Max.		
Drain source						
breakdown	Bvds	650	/	/	v	VGS=0V, ID=20µA
voltage						
Total drain	Idss	/	1	10	μΑ	VDS=650V, VGS=0V, Tj=25℃
leakage current		/	8	110	μA	VDS=650V, VGS=0V, Tj=150℃
Gate-to-source current	lgss	/	10	/	μΑ	VDS=0V, VGS=6V, Tj=25 ℃
Static		/	150	200	mΩ	VGS=6V, ID=3A, Tj=25℃
drain-source on-resistance	Rds(on)	/	300	/	mΩ	VGS=6V, ID=3A, Tj=150℃

Single Channel High Speed Drive Key Technical Indicators

Absolute Maximum Ratings

Over operating free-air temperature range(Unless otherwise noted) (1)

Description	Min	Max	Unit
VDD to VSS	-0.3	5.5	V
IN, INB to VSS	-0.3	20	V
N_OUT to VSS	-0.3	VDD+0.3	V
P_OUT to VSS	-0.3	VDD+0.3	V
Junction temperature		+150	°C
Storage temperature	-55	+150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating conditions

Over operating free-air temperature range(Unless otherwise noted)

Description	Min	Max	Unit
VDD	4.2	5.2	V
IN, INB	4.0	18	V
Operating temperature	-20	+125	°C

Electrical Characteristics

The maximum and minimum limits are determined by design, test, or data correlation. The typical values represent the most likely parametric norm at TJ = 25 $^{\circ}$ C for reference purposes only. (unless otherwise specified, VDD = 5V).

Symbol	Description	Test conditions	Min.	Тур.	Max.	Unit
Vdd	VDD operating voltage	Tj range of -20 $^\circ \!\! \mathbb{C}$ to 125 $^\circ \!\! \mathbb{C}$	4.7	5.0	5.2	V
	VDD undervoltage lockout	VDD rising	3.8	4.0	4.2	V
UVLO	VDD undervoltage lockout hysteresis			0.1		V
	VDD undervoltage lockout to output delay time			1300		ns
Ilk-n	Output leakage current	N_OUT=VDD		0.5	15	μΑ
LK-P	Output leakage current	P_OUT=VDD		0.5	15	μΑ
		N Channel output				
Ron - n	Drive output resistance - pulling down	VDD=5V			0.36	Ω
		P Channel output				
Ron - p	Drive output resistance – pulling up	VDD=5V		1.62	1.64	Ω
	Logic input					
Vін	Input voltage - logic 1		2.05			V
VIL	Input voltage - logic 0				1.78	V

High frequency characteristics

Over operating free-air temperature range (unless otherwise noted)

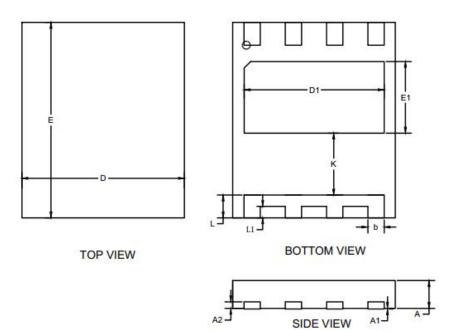
Symbol	Description	Test conditions	Min	Тур.	Max.	Unit
tr	Rise time1)	CL = 1000 pF		5.2		ns
t⊧	Fall time	CL = 1000 pF		3.3		ns
td- on	Turn-on propagation delay	CL = 1000 pF		6.3		ns
td- off	Turn-off propagation delay	CL = 1000 pF		6.3		ns

(1) The rise time is the time required for the output signal to rise from 10% to 90%.

(2) The fall time is the time required for the output signal to drop from 90% to 10%.

(3) The on propagation delay is the time required for the input signal to rise to 50% and the output signal to rise to 10%.

(4) The turn off propagation delay is the time required for the input signal to drop to 50% and the output signal to drop to 10%.



Integrated GaN Chip

Package Outline Dimensions

DFN5x6

Dimensions(mm)					
Symbol	Min.	Nom.	Max.		
A	0.8	0.85	0.9		
A1		0.02	0.05		
A2		0.2(REF)			
b	0.45	0.50	0.55		
D	4.90	5.00	5.10		
D1	4.20	4.30	4.40		
E	5.90	6.00	6.10		
E1	2.10	2.20	2.30		
е	1.27				
k	1.9	-	-		
L	0.65	0.7	0.75		

Disclaimer

The content specified herein is for the purpose of introducing SET's products (hereinafter "Products"). The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

SET does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of the Products or technical information described in this document.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). SET shall bear no responsibility in any way for use of any of the Products for the above special purposes.

Although SET endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a SET product.

The content specified herein is subject to change for improvement without notice. When using a SET product, be sure to obtain the latest specifications.