

General Description

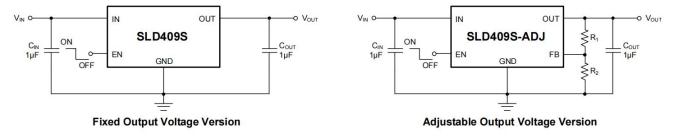
The SLD409S is a low V_{IN}, ultra-low noise, high PSRR and low dropout voltage linear regulator. It is capable of supplying 300mA output current with typical dropout voltage of only 72mV. The operating input voltage range is from 1.2V to 5.5V. The fixed output voltage range is from 1.2V to 3.3V and adjustable output voltage range is from 0.793V to 5.0V.

Other features include logic-controlled shutdown mode, short-circuit current limit and thermal shutdown protection. The SLD409S has automatic discharge function to quickly discharge V_{OUT} in the disabled status.

The SLD409S is suitable for applications which need low noise and fast transient response power supply, such as power supply of camera module in smart phone, etc.

The SLD409S is available in Green SOT23-5 packages. It operates over an operating temperature range of -40°C to +125°C.

Features


- Input voltage range: 1.2V ~ 5.5V
- Fixed VOUT: 1.2V/1.5V/1.8V/2.5V/2.8V/3V/3.3V/ in different version
- Adjustable Output from 0.793V to 5V
- Output accuracy: \pm 1% for all version and temperature range
- High PSRR: 92 dB (TYP) @ 1Khz
- Low noise: 6μVRMS (TYP) @ 10Hz~100Khz
- Low Quiescent current: 13µA (TYP)
- Shutdown Supply Current: 0.03µA (TYP)
- Over Current protection
- Output Discharge
- Thermal Shutdown
- -40°C to +125°C Operating Temperature Range
- Excellent Load and Line Transient Responses
- Robust ESD immunity capability HBM > ±2KV CDM > ±1KV
- Available in Green SOT23-5 Packages

Applications

- Camera Power
- Wireless device Power
- Smartphone, Wearable device
- Noise sensitive device Power

Typical Application

Figure 1. Typical Application Circuits

Block Diagram

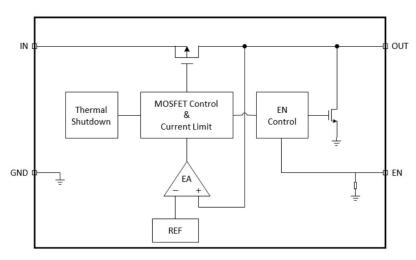
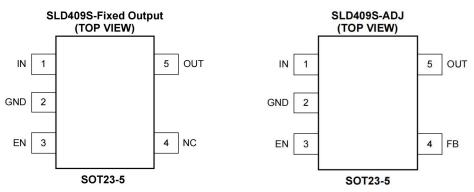



Figure 2. Block Diagram

Pin Configurations

Absolute Maximum Ratings

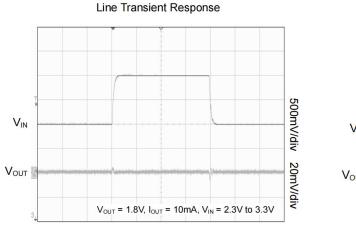
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit	
VIN	IN to GND			6	V
Vout	OUT to GND			6	V
VEN	EN to GND	-0.3	6	V	
lin	Input Current (Continuous)			1	А
Ιουτ	Output Current			1	А
Тѕтб	Storage Temperature Range			+150	°C
T,	Maximum Junction Temperature			+150	°C
ESD	Human Body Model, ANSI/ESDA/JEDEC JS-001-2012	All Pins	2		КV
	Charged Device Model, JESD22-C101	All Pins	1		

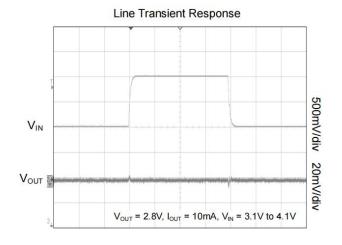
Recommended Operating Conditions

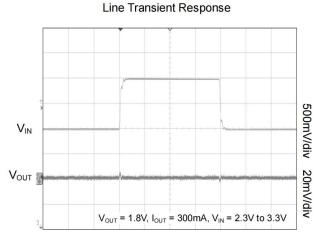
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance.

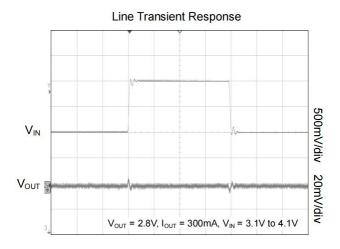
Parameters	Min.	Max.	Unit
Input Voltage: V _{IN}	1.1	5.5	V
Operating Junction Temperature Range	-40	125	°C

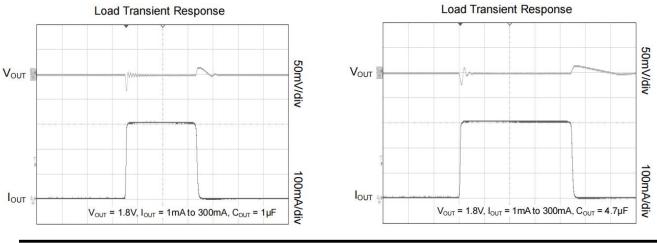

Electrical Characteristics

 $(V_{IN} = (V_{OUT(NOM)} + 0.3V) \text{ or } 1.1V \text{ (whichever is greater), } V_{EN} = V_{IN}, C_{IN} = C_{OUT} = 1\mu F, T_J = -40^{\circ}C \text{ to } +125^{\circ}C \text{ , typical values are at } T_J = +25^{\circ}C \text{ , unless otherwise noted.)}$


PARAMETER	SYMBOL	CONI	DITIONS	MIN	ТҮР	MAX	UNITS
	V _{IN}	Iout =60 mA		1.1		5.5	
Input Voltage Range		Ι _{ΟυΤ} =100 mA		1.2		5.5	v
input voltage Kange		louт =200 mA		1.3		5.5	
		Iout =300 mA		1.4		5.5	
Output Voltage Accuracy	V _{OUT}	V _{IN} =1.5V to 5.5V, I _{OUT} =0.1mA, V _{OUT(NOM)} ≥ 1.2V, T _J = +25°C		-1		1	
Output Voltage Accuracy		V_{IN} =1.5V to 5.5V, I_{OUT} =0.1mAto 300mA, $V_{OUT(NOM)} \ge 1.2V$, T_J = -40°C to +125°C		-2		2	- %
		V _{IN} = 1.5V to 5.5V, I _{OUT} = 0.1	1mA, T」= +25°C	0.784	0.793	0.802	
Feedback Voltage (SLD409S-ADJ)	V _{FB}	V_{IN} =1.5V to 5.5V, I_{OUT} =0. T _J = -40°C to +125°C	1mAto 300mA,	0.773		0.813	V
Line Regulation	ΔV_{LNR}	$V_{IN}=(V_{OUT(NOM)} + 0.3V)$ to !	5.5V, I _{OUT} = 0.1mA		0.05	1	mV
Load Regulation	$\Delta V_{LDR}/V_{OUT}$	I _{OUT} = 0.1mA to 300mA, V	_{OUT} ≥ 1.5V		1.2	5	mV/V
		V _{OUT} =V _{OUT(NOM)} -0.05V,	1.2V ≤ V _{OUT(NOM)} < 1.5V		185	260	
			1.5V ≤ V _{OUT(NOM)} < 1.8V		125	200	- mV
Dropout Voltage	V _{DROP}	I _{OUT} = 300mA	1.8V ≤ V _{OUT(NOM)} < 2.8V		100	160	
			2.8V ≤ V _{OUT(NOM)} ≤ 5.0V		72	120	
Output Current Limit	I _{LIMIT}	V _{OUT} =90% × V _{OUT(NOM)}		300	600		mA
Short Circuit Current	I _{SHORT}	V _{OUT} =0V			380		mA
Quiescent Current	lα	I _{OUT} =0mA			13	40	μA
Shutdown Supply Current	I _{SHDN}	V _{EN} =0V, V _{IN} = 5.5V			0.03	2	μA
	VIH	- V _{IN} =1.1V to 5.5V -		0.7			-
EN Input Threshold	VIL					0.3	- V
EN Pull-Down Current	I _{EN}	V _{EN} =V _{IN}			0.03	1	μA
Output Discharge Resistance	R _{DIS}	V _{EN} =0V, V _{IN} =3.3V			50		Ω
Turn-On Time	ton	From EN rising from 0V to V_{IN} to 90% \times $V_{\text{OUT(NOM)}}$, no load			100	240	μs
			f = 100Hz		90		
Power Supply Rejection Ratio	PSRR	Ι _{ουτ} = 20mA,	f = 1kHz		92		dB
	FJAN	$V_{IN}=V_{OUT(NOM)}+1V$	f = 10kHz		80	80	
			f = 100kHz		53		
Output Voltage Noise	en	f = 10Hz to 100kHz, I _{OUT} = 20mA			6		μV _{RMS}
Thermal Shutdown Temperature	T _{SHDN}				160		°C
Thermal Shutdown Hysteresis	ΔT_{SHDN}				20		°C

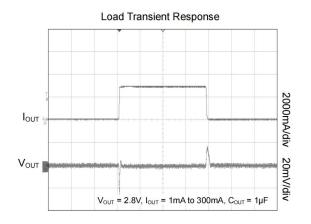

Typical Characteristics


Time (20µs/div)

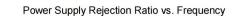

Time (20µs/div)

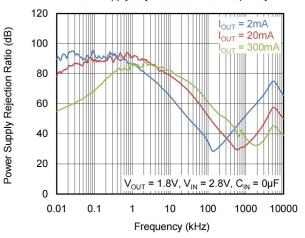
Time (20µs/div)

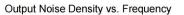
Time (20µs/div)

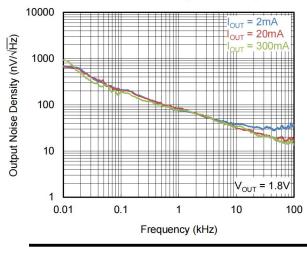


Time (10µs/div)

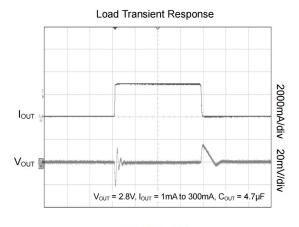

Time (10µs/div)

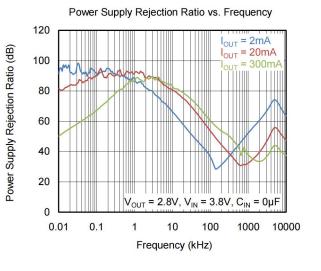


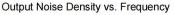

Typical Characteristics(continued)

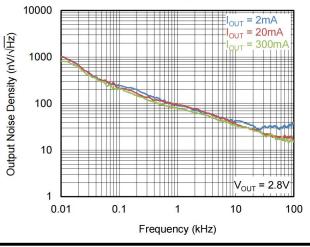


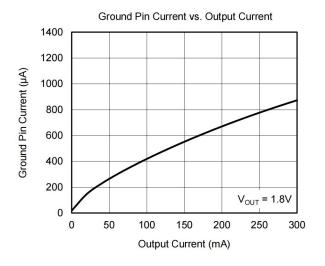
Time (20µs/div)



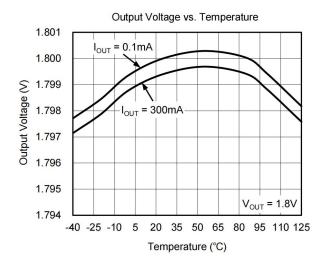


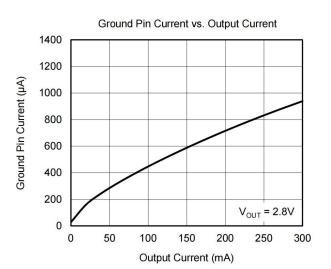


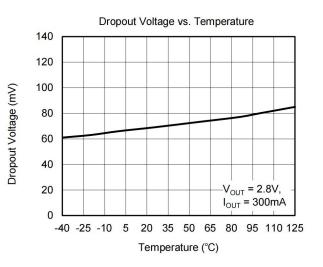

datasheet Rev. 1.3

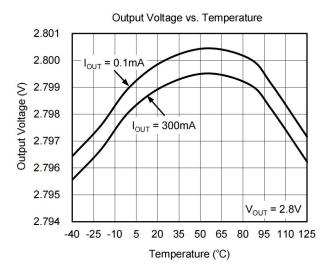

Time (20µs/div)

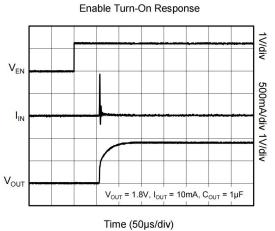


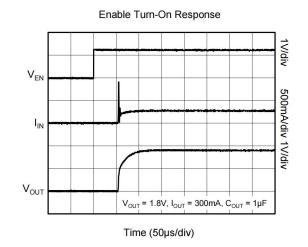


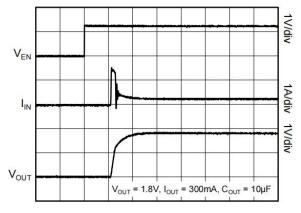



Typical Characteristics(continued)

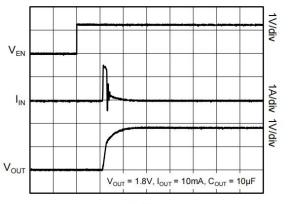




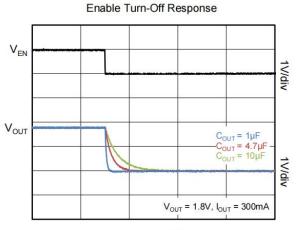




Typical Characteristics(continued)



Enable Turn-On Response



Time (200µs/div)

Time (50µs/div)

General Introduction

SLD409S is a low noise, high PSRR LDO which can provide 400mA output current. With very low quiescent current, SLD409S is suitable for high performance analog circuits and battery powered portable devices.

UVLO (Under-Voltage Lockout)

The device has a built-in under-voltage lockout (UVLO) circuit in LDO mode. When V_N is rising, the output remains disconnected from the input until IN voltage is above 1.5V (TYP). This circuit has a 100mV hysteresis to provide noise immunity to transient conditions.

OCP (Over Current Protection)

The device enters foldback mode when the output load hit the over current threshold or in shorting event. The current is clamped. The output voltage drops. When the voltage drops below foldback voltage threshold, foldback current limit is activated and scales back to short circuit current.

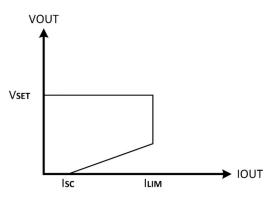


Figure 4. OCP behavior

The OPC threshold is 625mA(typical)

Thermal Shutdown

SLD409S has thermal shutdown function. When the junction temperature exceeds TSD, the device turns off internal MOSFET to protect itself. The device exits thermal shutdown after junction temperature cools down below TSD-THYS. And then the device full works after a soft start period.

SS function

To avoid high inrush current, SLD409S integrated soft-start function. When EN status changes from logic 0 to logic 1 or from thermal shutdown mode, SLD409S will regulate output current for about 1ms and then enter full function status.

Output discharge

SLD409S has output discharge function. The VOUT connects to GND with 150ohm resistor when EN=0 or thermal shutdown mode for 2ms and then disconnects this resistor.

Adjustable Regulator

The output voltage of the SLD409S-ADJ can be adjusted from 0.793V to 5.0V. The FB pin will be connected to two external resistors as shown in Figure 5. Capacitance CFF = 10nF can be added to improve stability and reduce noise. Use R2 = $40k\Omega$ to maintain a 20μ A minimum load. The output voltage is determined by the following equation:

$$V_{OUT} = V_{FB} \times \left(1 + \frac{R_1}{R_2}\right)$$
(1)

where:

 V_{OUT} is output voltage and VFB is the internal voltage reference, VFB = 0.793V.

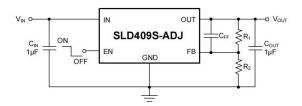
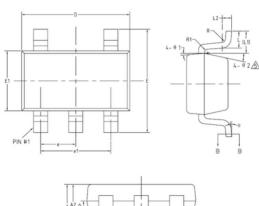
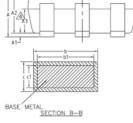




Figure 5. Adjustable Output Voltage Application

SLD409S 300mA Ultra-Low Noise,High PSRR LDO

(UNITS OF MEASURE=MILLIMETER)

	SYMOBL	MIN	NOW	MAX
A	А	-	-	1.25
737	A1	0	-	0.15
	A2	1.00	1.10	1.20
	A3	0.60	0.65	0.70
	b	0.36	-	0.50
	b1	0.36	0.38	0.45
	с	0.14	-	0.20
	c1	0.14	0.15	0.16
	D	2.826	2.926	3.026
	E	2.60	2.80	3.00
	E1	1.526	1.625	1.726
$\overline{\mathcal{A}}$	е	0.90	0.95	1.00
\mathbb{A}	e1	1.80	1.90	2.00
	L	0.35	0.45	0.60
	L1	0.59REF		
	L2	0.25BSC		
	R	0.10	-	-
	R1	0.10	-	0.25
	θ	0	-	8
^	Θ1	3	5	7
$\underline{5}$	Θ2	6	-	14

NOTES:

ALL DIMENSIONS REFER TO JEDEC STANDARD MO-178 AA DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS

SOT23-5 Package Outline Dimensio

PACKAGE SOT23-5

PACKAGE/ORDERING INFORMATION

Product Name	12345	Set Voltage	Package	Units Reel
SLD409S121A	SZSXX	1.2V	SOT23-5	3000
SLD409S151A	SZTXX	1.5V	SOT23-5	3000
SLD409S181A	SZUXX	1.8V	SOT23-5	3000
SLD409S251A	SZVXX	2.5V	SOT23-5	3000
SLD409S281A	SYGXX	2.8V	SOT23-5	3000
SLD409S301A	SZWXX	3.0V	SOT23-5	3000
SLD409S331A	SZXXX	3.3V	SOT23-5	3000
SLD409S-ADJ	SXZXX	0.793V-5.0V	SOT23-5	3000

Disclaimer

The content specified herein is for the purpose of introducing SET's products (hereinafter "Products"). The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

SET does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of the Products or technical information described in this document.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). SET shall bear no responsibility in any way for use of any of the Products for the above special purposes.

Although SET endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a SET product.

The content specified herein is subject to change for improvement without notice. When using a SET product, be sure to obtain the latest specifications.